Proposition 4.8.9.1. Let $F: \operatorname{\mathcal{A}}\rightarrow \operatorname{\mathcal{B}}$ be a functor of $\infty $-categories and let $n$ be an integer. The following conditions are equivalent:
- $(1)$
The functor $F$ is categorically $n$-connective (Definition 4.8.7.1).
- $(2)$
For every essentially $(n-1)$-categorical functor of $\infty $-categories $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, the diagram
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{Fun}(\operatorname{\mathcal{B}}, \operatorname{\mathcal{C}}) \ar [r]^-{\circ F} \ar [d]^{U \circ } & \operatorname{Fun}( \operatorname{\mathcal{A}}, \operatorname{\mathcal{C}}) \ar [d]^{ U \circ } \\ \operatorname{Fun}( \operatorname{\mathcal{B}}, \operatorname{\mathcal{D}}) \ar [r]^-{\circ F} & \operatorname{Fun}( \operatorname{\mathcal{A}}, \operatorname{\mathcal{D}}) } \]is a categorical pullback square.
- $(3)$
For every $(n-1)$-categorical isofibration $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{B}}$, precomposition with $F$ induces an equivalence of $\infty $-categories
\[ \theta _{\operatorname{\mathcal{C}}}: \operatorname{Fun}_{ / \operatorname{\mathcal{B}}}( \operatorname{\mathcal{B}}, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}_{ / \operatorname{\mathcal{B}}}( \operatorname{\mathcal{A}}, \operatorname{\mathcal{C}}). \]