Corollary 7.3.3.14 (Constant Diagrams). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which contains an initial object, and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. The following conditions are equivalent:
- $(1)$
The functor $F$ is left Kan extended from the full subcategory $\operatorname{\mathcal{C}}^{\mathrm{init}} \subseteq \operatorname{\mathcal{C}}$ spanned by the initial objects.
- $(2)$
The functor $F$ carries each morphism in $\operatorname{\mathcal{C}}$ to an isomorphism in the $\infty $-category $\operatorname{\mathcal{D}}$.
- $(3)$
The functor $F$ is isomorphic to a constant functor.