Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 9.4.0.1. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an essentially small inner fibration of $\infty $-categories. We say that a commutative diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [rr]^-{H} \ar [dr]_{U} & & \widehat{\operatorname{\mathcal{E}}} \ar [dl]^{ \widehat{U} } \\ & \operatorname{\mathcal{C}}& } \]

exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise cocompletion of $\operatorname{\mathcal{E}}$ if the following conditions are satisfied:

$(1)$

For every object $C \in \operatorname{\mathcal{C}}$, the map of fibers $H_{C}: \operatorname{\mathcal{E}}_{C} \rightarrow \widehat{\operatorname{\mathcal{E}}}_{C}$ exhibits $\widehat{\operatorname{\mathcal{E}}}_{C}$ as a cocompletion of $\operatorname{\mathcal{E}}_{C}$ (see Definition 8.4.0.1).

$(2)$

The functor $H$ is fully faithful.

$(3)$

The functor $\widehat{U}$ is a locally cartesian fibration.

$(4)$

For every morphism $f: C \rightarrow D$ of $\operatorname{\mathcal{C}}$, the contravariant transport functor $f^{\ast }: \widehat{\operatorname{\mathcal{E}}}_{D} \rightarrow \widehat{\operatorname{\mathcal{E}}}_{C}$ preserves small colimits.