Example 9.4.1.2. Let $\operatorname{\mathcal{E}}$ be an $\infty $-category and let $\mathbb {K}$ be a collection of simplicial sets. Then $\operatorname{\mathcal{E}}$ is $\mathbb {K}$-cocomplete (in the sense of Definition 8.4.5.1) if and only if the inner fibration $\operatorname{\mathcal{E}}\rightarrow \Delta ^0$ is $\mathbb {K}$-cocomplete (in the sense of Definition 9.4.1.1).
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$