Definition 9.3.1.12. Let $\mathbb {K}$ be a collection of simplicial sets and suppose we are given a commutative diagram of simplicial sets
where $U$ and $\widehat{U}$ are inner fibrations. We will say that the diagram (9.28) exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{E}}$ if, for every edge $e: \Delta ^1 \rightarrow \operatorname{\mathcal{C}}$, the induced map
exhibits $\Delta ^1 \times _{\operatorname{\mathcal{C}}} \widehat{\operatorname{\mathcal{E}}}$ as a fiberwise $\mathbb {K}$-cocompletion of $\Delta ^1 \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ (in the sense of Definition 9.3.1.8).
If $\kappa $ is a regular cardinal, we say that the diagram (9.28) exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise $\kappa $-cocompletion of $\operatorname{\mathcal{E}}$ if it exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{E}}$, where $\mathbb {K}$ is the collection of all $\kappa $-small simplicial sets.