Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.4.6.7. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets. The following conditions are equivalent:

$(1)$

The pullback functor

\[ (\operatorname{Set_{\Delta }})_{/\operatorname{\mathcal{C}}} \rightarrow (\operatorname{Set_{\Delta }})_{ / \operatorname{\mathcal{E}}} \quad \quad \operatorname{\mathcal{C}}' \mapsto \operatorname{\mathcal{C}}' \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}} \]

preserves Morita equivalences of simplicial sets. That is, if $F: \operatorname{\mathcal{C}}'' \rightarrow \operatorname{\mathcal{C}}'$ is a Morita equivalence in $(\operatorname{Set_{\Delta }})_{/\operatorname{\mathcal{C}}}$, then the induced map $F_{\operatorname{\mathcal{E}}}: \operatorname{\mathcal{C}}'' \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}' \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$ is also a Morita equivalence.

$(2)$

If $F: \operatorname{\mathcal{C}}'' \rightarrow \operatorname{\mathcal{C}}'$ is a categorical equivalence in $(\operatorname{Set_{\Delta }})_{/\operatorname{\mathcal{C}}}$, then $F_{\operatorname{\mathcal{E}}}$ is a Morita equivalence.

$(3)$

If $F: \operatorname{\mathcal{C}}'' \rightarrow \operatorname{\mathcal{C}}'$ is a categorical equivalence in $(\operatorname{Set_{\Delta }})_{/\operatorname{\mathcal{C}}}$ which is surjective on vertices, then $F_{\operatorname{\mathcal{E}}}$ is a categorical equivalence.

$(4)$

The inner fibration $U$ is flat.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are immediate from the definitions (see Corollary 9.4.5.9), and the implication $(4) \Rightarrow (1)$ is a reformulation of Theorem 9.4.6.6. $\square$