Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.4.6.28. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a flat inner fibration of simplicial sets and suppose we are given a digram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [rr]^-{H} \ar [dr]_{U} & & \widehat{\operatorname{\mathcal{E}}} \ar [dl]^{\widehat{U}} \\ & \operatorname{\mathcal{C}}& } \]

which exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise idempotent completion of $\operatorname{\mathcal{E}}$. Then $\widehat{U}$ is a flat isofibration.

Proof. It follows from Example 9.4.6.10 that $\widehat{U}$ is a flat inner fibration. Since the fibers of $\widehat{U}$ are idempotent complete, it is an isofibration (Corollary 9.4.6.27). $\square$