Corollary 9.4.6.30. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a flat isofibration of simplicial sets. Then $U$ is exponentiable.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Corollary 9.4.6.30. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a flat isofibration of simplicial sets. Then $U$ is exponentiable.
Proof. By virtue of Proposition 9.4.6.29, we may assume that $\operatorname{\mathcal{C}}$ is an $\infty $-category. In this case, the result follows from Proposition 9.4.6.17. $\square$