Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 9.4.8.3. Let $\kappa $ be an uncountable regular cardinal, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a flat inner fibration of $\infty $-categories which is essentially $\kappa $-small, and let $V: \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } ) \rightarrow \operatorname{\mathcal{C}}$ be the cocartesian fibration of Lemma 9.4.8.2. We let $\operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )^{\dagger }$ denote the full subcategory

\[ \operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } ) \subseteq \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )) \]

introduced in Construction 8.6.2.2, and let $V^{\dagger }: \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ denote the projection map. It follows from Proposition 8.6.2.3 that the evaluation map

\[ \operatorname{ev}: \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } ) \]

exhibits $V^{\dagger }$ as a cartesian conjugate of $V$.