Definition 7.4.2.2. Suppose we are given a commutative diagram of simplicial sets
where $U$ and $U'$ are left fibrations having covariant transport representations $\mathscr {F} = \operatorname{Tr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ and $\mathscr {F}' = \operatorname{Tr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}}$, respectively. We say that a natural transformation $\gamma : \mathscr {F} \rightarrow \mathscr {F}'$ is compatible with $\Gamma $ if the diagram
commutes up to homotopy (in the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{E}}, \operatorname{\mathcal{S}})$). Here $\alpha : \underline{\Delta ^0}_{\operatorname{\mathcal{E}}} \rightarrow \mathscr {F}|_{\operatorname{\mathcal{E}}}$ and $\alpha ': \underline{\Delta ^0}_{\operatorname{\mathcal{E}}' } \rightarrow \mathscr {F}'|_{\operatorname{\mathcal{E}}'}$ denote natural transformations which exhibit $\mathscr {F}$ and $\mathscr {F}'$ as covariant transport representations of $U$ and $U'$, in the sense of Definition 7.4.1.8.