Proposition 7.4.3.13. Let $\kappa $ be an uncountable cardinal, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$ be a diagram, and let $\beta : \mathscr {F} \rightarrow \underline{X}_{\operatorname{\mathcal{C}}}$ be a natural transformation. Suppose we are given a left fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ and a commutative diagram
in the $\infty $-category $\operatorname{Fun}( \operatorname{\mathcal{E}}, \operatorname{\mathcal{S}}^{< \kappa } )$. Assume that $\operatorname{\mathcal{E}}$ is essentially $\kappa $-small and that $\alpha $ exhibits $\mathscr {F}$ as a covariant transport representation for $U$ (Definition 7.4.1.8). The following conditions are equivalent:
- $(1)$
The natural transformation $\beta $ exhibits $X$ as a colimit of $\mathscr {F}$ in the $\infty $-category $\operatorname{\mathcal{S}}^{< \kappa }$.
- $(2)$
The natural transformation $\gamma $ determines a weak homotopy equivalence of simplicial sets $\operatorname{\mathcal{E}}\rightarrow \operatorname{Hom}_{\operatorname{\mathcal{S}}^{< \kappa } }( \Delta ^0, X )$.