Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 7.7.5.10. Small colimits are strongly universal in the $\infty $-category $\operatorname{\mathcal{S}}$.

Proof. By virtue of Example 7.7.5.3, the $\infty $-category $\operatorname{\mathcal{S}}$ satisfies both Mather cube theorems. Consequently, to show that small colimits in $\operatorname{\mathcal{S}}$ are strongly universal, it will suffice to show that small coproducts in $\operatorname{\mathcal{S}}$ are universal (Corollary 7.7.5.9). This follows from Corollary 7.7.4.12. $\square$