Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.6.18. Suppose we are given a pullback diagram of $\infty $-categories

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [r]^-{F} \ar [d]^{U} & \operatorname{\mathcal{E}}' \ar [d]^{U'} \\ \operatorname{\mathcal{C}}\ar [r]^-{ \overline{F} } & \operatorname{\mathcal{C}}', } \]

where the vertical maps are right fibrations. If $\overline{F}$ exhibits $\operatorname{\mathcal{C}}'$ as an idempotent completion of $\operatorname{\mathcal{C}}$, then $F$ exhibits $\operatorname{\mathcal{E}}'$ as an idempotent completion of $\operatorname{\mathcal{E}}$.

Proof. It follows from Corollary 8.5.6.15 that $F$ is a Morita equivalence. It will therefore suffice to show that the $\infty $-category $\operatorname{\mathcal{E}}'$ is idempotent complete, which follows from Corollary 8.5.4.24. $\square$