Lemma 8.7.3.8. Let $\mathbb {K}$ be a collection of simplicial sets, let $\lambda $ be an uncountable cardinal, and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between $\lambda $-small $\infty $-categories. Suppose that $\operatorname{\mathcal{D}}$ is $\mathbb {K}$-cocomplete, and that the $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{C}}$ is essentially $\lambda $-small. Then the following conditions are equivalent:
- $(1)$
The functor $F$ exhibits $\operatorname{\mathcal{D}}$ as a $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{C}}$ (Definition 8.4.5.1).
- $(2)$
For every $\infty $-category $\operatorname{\mathcal{E}}$ which is $\mathbb {K}$-cocomplete and $\lambda $-small, precomposition with $F$ induces an equivalence of $\infty $-categories $\operatorname{Fun}^{\mathbb {K}-\mathrm{cocont}}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$.
- $(3)$
For every $\infty $-category $\operatorname{\mathcal{E}}$ which is $\mathbb {K}$-cocomplete and $\lambda $-small, precomposition with $F$ induces a homotopy equivalence of Kan complexes
\[ \operatorname{Fun}^{\mathbb {K}-\mathrm{cocont}}( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}})^{\simeq } \rightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})^{\simeq }. \]- $(4)$
For every $\infty $-category $\operatorname{\mathcal{E}}$ which is $\mathbb {K}$-cocomplete and $\lambda $-small, precomposition with $F$ induces a bijection
\[ \operatorname{Hom}_{ \mathrm{h} \mathit{\operatorname{\mathcal{QC}}}_{< \lambda }^{ \mathbb {K}-\mathrm{cocont}} }( \operatorname{\mathcal{D}}, \operatorname{\mathcal{E}}) \rightarrow \operatorname{Hom}_{ \mathrm{h} \mathit{\operatorname{\mathcal{QC}}}_{< \lambda } }( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}}). \]