Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 8.7.3.18. Let $\mathbb {K}$ be a small collection of small simplicial sets. If $\operatorname{\mathcal{C}}$ is an essentially small $\infty $-category, then its $\mathbb {K}$-cocompletion is also essentially small. Beware that the smallness condition on $\mathbb {K}$ cannot be omitted: for example, the cocompletion of a (nonempty) $\infty $-category $\operatorname{\mathcal{C}}$ is never essentially small (see Proposition 7.1.2.15).