Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 4.1.5.9. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between categories. For each object $D \in \operatorname{\mathcal{D}}$, let $\operatorname{\mathcal{C}}_{D} = \{ D \} \times _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{C}}$ denote the corresponding fiber of $F$ (more concretely, $\operatorname{\mathcal{C}}_{D}$ is the subcategory of $\operatorname{\mathcal{C}}$ spanned by those objects $C \in \operatorname{\mathcal{C}}$ satisfying $F(C) = D$, and those morphisms $u: C \rightarrow C'$ satisfying $F(u) = \operatorname{id}_{D}$). It follows from Remark 4.1.5.8 that if $F$ is a fibration in groupoids, then the projection map $\operatorname{\mathcal{C}}_{D} \rightarrow \{ D\} $ is also a fibration in groupoids, so that the category $\operatorname{\mathcal{C}}_{D}$ is a groupoid (Example 4.1.5.7). This observation motivates the terminology of Definition 4.1.5.1: if $F$ is a fibration in groupoids, then one can think of the category $\operatorname{\mathcal{C}}$ as the total space of a “family” of groupoids $\{ \operatorname{\mathcal{C}}_{D} \} _{D \in \operatorname{\mathcal{D}}}$ which is parametrized by the category $\operatorname{\mathcal{D}}$.