Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 8.4.0.35. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor between categories, and let $\operatorname{N}_{\bullet }(F): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{D}})$. Then $\operatorname{N}_{\bullet }(F)$ is a right fibration if and only if $F$ is a fibration in groupoids (see Definition 4.2.2.1 and Proposition 4.2.2.9). Similarly, $\operatorname{N}_{\bullet }(F)$ is a left fibration if and only if $F$ is an opfibration in groupoids.