Proposition 11.6.0.7. See Corollary 6.3.2.12.
Proof. Using Corollary 4.1.3.3, we can choose a compatible family of inner anodyne morphisms $G_{\alpha }: \operatorname{\mathcal{D}}_{\alpha } \rightarrow \operatorname{\mathcal{E}}_{\alpha }$, where each $\operatorname{\mathcal{E}}_{\alpha }$ is an $\infty $-category. Set $\operatorname{\mathcal{E}}= \varinjlim \operatorname{\mathcal{E}}_{\alpha }$, so that the morphisms $G_{\alpha }$ determine a map of simplicial sets $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$. Since each $G_{\alpha }$ is a categorical equivalence of simplicial sets, each of the composite maps $(G_{\alpha } \circ F_{\alpha }): \operatorname{\mathcal{C}}_{\alpha } \rightarrow \operatorname{\mathcal{E}}_{\alpha }$ exhibits $\operatorname{\mathcal{E}}_{\alpha }$ as a localization of $\operatorname{\mathcal{C}}_{\alpha }$ with respect to $W_{\alpha }$. In particular, each of the morphisms $G_{\alpha } \circ F_{\alpha }$ carries edges of $W_{\alpha }$ to isomorphisms in the $\infty $-category $\operatorname{\mathcal{E}}_{\alpha }$ (Remark 6.3.1.10). Applying Proposition 6.3.2.5, we can (functorially) factor each of the morphisms $G_{\alpha } \circ F_{\alpha }$ as a composition
where each $\operatorname{\mathcal{C}}_{\alpha }[ W^{-1}_{\alpha } ]$ is an $\infty $-category, each of the morphisms $G'_{\alpha }$ exhibits $\operatorname{\mathcal{C}}_{\alpha }[ W_{\alpha }^{-1} ]$ as a localization of $\operatorname{\mathcal{C}}_{\alpha }$ with respect to $W_{\alpha }$, and the colimit map $G': \operatorname{\mathcal{C}}\rightarrow \varinjlim _{\alpha } \operatorname{\mathcal{C}}_{\alpha }[ W^{-1}_{\alpha } ]$ exhibits $\operatorname{\mathcal{C}}[W^{-1}] = \varinjlim _{\alpha } \operatorname{\mathcal{C}}_{\alpha }[ W^{-1}_{\alpha } ]$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$. We then have a filtered diagram of commutative squares
having colimit
Applying Remark 6.3.1.19, we deduce that each of the morphisms $F'_{\alpha }$ is a categorical equivalence of simplicial sets. Since the collection of categorical equivalences is stable under filtered colimits (Corollary 4.5.7.2), the morphism $F'$ is also a categorical equivalence of simplicial sets. Applying Remark 6.3.1.19 again, we deduce that $F' \circ G'$ exhibits $\operatorname{\mathcal{E}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$. Since each $G_{\alpha }$ is a categorical equivalence, Corollary 4.5.7.2 also guarantees that $G$ is a categorical equivalence. Using the equality $G \circ F = F' \circ G'$ and applying Remark 6.3.1.19 again, we conclude that $F$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to $W$, as desired. $\square$