Corollary 6.3.4.3. Suppose we are given a categorical pushout diagram of simplicial sets
\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{C}}\ar [d]^{F} \ar [r]^-{G} & \operatorname{\mathcal{C}}' \ar [d]^{F'} \\ \operatorname{\mathcal{D}}\ar [r] & \operatorname{\mathcal{D}}', } \]
where $F$ exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{\mathcal{C}}$ with respect to some collection of edges $W$. Then $F'$ exhibits $\operatorname{\mathcal{D}}'$ as a localization of $\operatorname{\mathcal{C}}'$ with respect to $G(W)$.