Corollary 11.6.0.1. See Lemma 9.1.5.2.
11.6 Reclassified Tags
This section consists of tags which were replaced by a tag with similar content but different environment (for example, a lemma which became a theorem).
Corollary 11.6.0.2. See Remark 9.1.5.6.
Corollary 11.6.0.3. See Proposition 7.1.7.2
Corollary 11.6.0.4. See Proposition 7.4.5.1.
Proposition 11.6.0.5. See Theorem 7.4.4.6 for a stronger assertion.
Corollary 11.6.0.6. See Variant 7.4.4.14. Let $\lambda $ be an uncountable cardinal and let $\kappa = \mathrm{ecf}(\lambda )$ be the exponential cofinality of $\lambda $. Suppose we are given a diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{QC}}$, where $\operatorname{\mathcal{C}}$ is a $\kappa $-small simplicial set. If the $\infty $-category $\mathscr {F}(C)$ is essentially $\lambda $-small for each $C \in \operatorname{\mathcal{C}}$, then the limit $\varprojlim (\mathscr {F} )$ is also essentially $\lambda $-small.
Proof. Using Proposition 4.7.5.5, we can choose a categorical equivalence $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, where $\operatorname{\mathcal{D}}$ is a $\lambda $-small $\infty $-category (if $\kappa $ is uncountable, we can even arrange that $\operatorname{\mathcal{D}}$ is $\kappa $-small). Without loss of generality, we may assume that $\mathscr {F}$ is obtained as the restriction of the covariant transport representation of some cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{D}}$. Using Proposition 7.4.4.1, we can identify $\varprojlim ( \mathscr {F} )$ with a full subcategory of the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{D}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$. It will therefore suffice to show that the $\infty $-category $\operatorname{Fun}_{ / \operatorname{\mathcal{D}}}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ is essentially $\lambda $-small (Corollary 4.7.5.14). By construction, we have a pullback diagram of simplicial sets
where the vertical maps are cocartesian fibrations (Theorem 5.2.1.1), and therefore isofibrations (Proposition 5.1.4.9). It follows that (11.8) is also a categorical pullback square (Corollary 4.5.2.27). Using Corollary 4.7.5.17, we are reduced to proving that the $\infty $-categories $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{E}})$ and $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ are essentially $\lambda $-small, which follows from Remark 4.7.5.11. $\square$
Corollary 11.6.0.7. See Proposition 7.4.4.1.
Remark 11.6.0.8. See Corollary 7.4.3.8.
Variant 11.6.0.9 (Transitivity of Essential Smallness). See Corollary 4.7.9.14.
Corollary 11.6.0.10. See Proposition 4.7.9.7.
Corollary 11.6.0.11. See Example 4.7.9.4.
Corollary 11.6.0.12. Let $n$ be an integer, let $\operatorname{\mathcal{C}}$ be a simplicial set and let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}$ be a diagram. Suppose that, for every vertex $C \in \operatorname{\mathcal{C}}$, the Kan complex $\mathscr {F}(C)$ is $n$-truncated. Then the limit $\varprojlim ( \mathscr {F} )$ is an $n$-truncated Kan complex.$\infty $-category.
Corollary 11.6.0.13. See Proposition 7.4.1.16.
Corollary 11.6.0.14. See Proposition 7.4.1.6.
Exercise 11.6.0.15. See Example 9.1.1.2.
Remark 11.6.0.16. See Example 7.3.1.9.
Example 11.6.0.17. Let $(A, \leq )$ be a partially ordered set. Combining Exercise 11.6.0.15 with Corollary 9.1.2.8, we see that the $\infty $-category $\operatorname{N}_{\bullet }(A)$ is filtered if and only if the partially ordered set $(A, \leq )$ is directed.
Corollary 11.6.0.18. See Proposition 8.6.3.5.
Proposition 11.6.0.19. See Corollary 4.5.2.22.
Remark 11.6.0.20. See the proof of Proposition 10.2.6.14.
Corollary 11.6.0.21. See Proposition 10.2.6.14.
Notation 11.6.0.22. See Example 10.2.6.18
Proposition 11.6.0.23. See Remark 9.3.2.16.
Corollary 11.6.0.24. See Remark 9.3.4.22.
Corollary 11.6.0.25. See Remark 9.3.4.18.
Corollary 11.6.0.26. See Remark 9.3.4.24.
Corollary 11.6.0.27. See Remark 9.3.4.25.
Corollary 11.6.0.28. See Proposition 9.3.4.21.
Proposition 11.6.0.29. See Remark 9.3.4.16.
Corollary 11.6.0.30. See Remark 9.3.4.17.
Proposition 11.6.0.31. See Example 9.3.4.10.
Variant 11.6.0.32. See Proposition 1.2.3.15.
Exercise 11.6.0.33. See Proposition 1.2.4.7. Let $0 \leq i \leq n$ be integers. For $j \in [n] \setminus \{ i\} $, we can regard the map $\delta ^{j}_{n}$ of Construction 1.1.1.4 of simplicial sets from $\Delta ^{n-1}$ to the horn $\Lambda ^{n}_{i} \subseteq \Delta ^{n}$. Show that, for any simplicial set $S_{\bullet }$, the construction determines an injection $\operatorname{Hom}_{\operatorname{Set_{\Delta }}}( \Lambda ^{n}_{i}, S_{\bullet } ) \rightarrow \prod _{ j \in [n] \setminus \{ i\} } S_{n-1}$, whose image is the collection of “incomplete” sequences $( \sigma _0, \ldots , \sigma _{i-1}, \bullet , \sigma _{i+1}, \ldots , \sigma _ n)$ satisfying $d^{n-1}_ j(\sigma _ k) = d^{n-1}_{k-1}( \sigma _{j})$ for $j, k \in [n] \setminus \{ i\} $ with $j < k$.
Example 11.6.0.34. See Remark 1.2.4.6.
Exercise 11.6.0.35. See Proposition 1.1.4.13.
Definition 11.6.0.36. See Example 1.1.2.8.
Remark 11.6.0.37. See Exercise 1.1.2.9.
Notation 11.6.0.38 (Degeneracy Operators). See Construction 1.1.2.1
Notation 11.6.0.39. See Construction 1.1.1.4.
Remark 11.6.0.40. See Proposition 1.1.0.12.
Construction 11.6.0.41 (The Standard Simplex). See Example 1.2.2.10.
Lemma 11.6.0.42. See Variant 3.2.4.12.
Corollary 11.6.0.43. See Theorem 9.2.8.2.
Remark 11.6.0.44. See Corollary 9.2.9.9.
Remark 11.6.0.45. The contents of this tag are now at Example 4.6.6.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: K \rightarrow \operatorname{\mathcal{C}}$ be a diagram. The slice diagonal morphism $\delta _{/F}: \operatorname{\mathcal{C}}_{/F} \hookrightarrow \operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}}) } \{ F\} $ carries each $n$-simplex of $\operatorname{\mathcal{C}}_{/F}$ to an $n$-simplex $\sigma $ of the oriented fiber product $\operatorname{\mathcal{C}}\operatorname{\vec{\times }}_{ \operatorname{Fun}(K, \operatorname{\mathcal{C}}) } \{ F\} $, which we can identify with a map $\Delta ^0 \diamond K \rightarrow \operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{C}})$. It is not difficult to see that this map factors (uniquely) through the comparison map $c: \Delta ^0 \diamond K \twoheadrightarrow K^{\triangleleft }$ of Notation 4.5.8.3, and can therefore also be viewed as an $n$-simplex of the simplicial set $\operatorname{Fun}(K^{\triangleleft }, \operatorname{\mathcal{C}}) \times _{ \operatorname{Fun}(K,\operatorname{\mathcal{C}})} \{ F\} $. Consequently, $\delta _{/F}$ factors as a composition where $\iota $ is a monomorphism of simplicial sets given by precomposition with $c$. Since $c$ is a categorical equivalence of simplicial sets (Theorem 4.5.8.8), the functor $\iota $ is an equivalence of $\infty $-categories: this follows by applying Corollary 4.5.2.32 to the diagram since the vertical maps are isofibrations (Corollary 4.4.5.3). It follows from Theorem 4.6.4.17 that the functor is also an equivalence of $\infty $-categories. Similarly, the coslice diagonal morphism $\delta _{F/}$ factors through an equivalence of $\infty $-categories
Corollary 11.6.0.46. See Proposition 3.2.7.2.
Corollary 11.6.0.47. See Remark 3.2.2.17.
Proposition 11.6.0.48. See Corollary 9.2.1.17.
Proposition 11.6.0.49. See Remark 9.2.1.8.
Variant 11.6.0.50 (Colimits in a Reflective Localization). See Corollary 7.1.4.23.
Corollary 11.6.0.51 (Limits in a Reflective Localization). See Variant 7.1.4.25.
Exercise 11.6.0.52. The contents of this tag are now at Remark 1.1.1.7 and Proposition 1.1.1.9. Let $C_{\bullet }$ be a semisimplicial object of a category $\operatorname{\mathcal{C}}$. Show that the face operators of Notation 11.6.0.39 satisfy the following condition:
For $n \geq 2$ and $0 \leq i < j \leq n$, we have $d^{n-1}_{i} \circ d^{n}_{j} = d^{n-1}_{j-1} \circ d^{n}_{i}$ (as a map from $C_{n}$ to $C_{n-2}$).
Conversely, show that any collection of objects $\{ C_ n \} _{n \geq 0}$ and morphisms $\{ d^{n}_ i: C_ n \rightarrow C_{n-1} \} _{0 \leq i \leq n}$, satisfying $(\ast )$ determines a unique semisimplicial object of $\operatorname{\mathcal{C}}$.
Exercise 11.6.0.53. See Proposition 1.1.2.14.
Corollary 11.6.0.54. See Proposition 10.2.2.6.
Definition 11.6.0.55. See Variant 1.3.2.8.
Proposition 11.6.0.56. See Corollary 5.3.7.3 or Proposition 5.3.7.2.
Example 11.6.0.57. See Construction 8.1.7.1.
Proposition 11.6.0.58. See Corollary 7.6.2.27.
Corollary 11.6.0.59. See Lemma 8.1.4.4.
Variant 11.6.0.60. See Theorem 8.4.3.3.
Proposition 11.6.0.61. This contents of this tag are now at Corollary 5.3.3.16.
Example 11.6.0.62. The contents of this tag are now located at Proposition 8.3.5.5.
Remark 11.6.0.63 (The Universal Mapping Property of Representable Profunctors). The contents of this tag are now at Corollary .
Corollary 11.6.0.64. The contents of this tag are now at Proposition 8.3.3.8.
Definition 11.6.0.65. See Variant 4.7.8.6.
Corollary 11.6.0.66. See Proposition 3.1.6.17.
Definition 11.6.0.67. See Variant 4.7.5.4.
Remark 11.6.0.68. See Warning 8.1.0.4.
Example 11.6.0.69. See Corollary 7.4.5.15
Proposition 11.6.0.70. See Corollary None.
Remark 11.6.0.71. See Example None.
Proposition 11.6.0.72. See Corollary 5.6.5.21.
Proposition 11.6.0.73. See Theorem 11.5.0.60.
Example 11.6.0.74. See Remark 5.3.2.14.
Remark 11.6.0.75 (Functoriality in $\Delta ^ n$). Subsumed in Remark 5.3.2.3.
Remark 11.6.0.76. See Remark 5.3.2.3.
Example 11.6.0.77. See Example 5.3.2.4.
Example 11.6.0.78. See Example 5.3.2.13.
Remark 11.6.0.79 (Functoriality in $\overrightarrow {X}$). See Remark 5.3.2.8.
Example 11.6.0.80. See Remark 5.3.2.7.
Construction 11.6.0.81 (The Mapping Simplex). The contents of this tag are now at Notation 5.3.2.11.
Corollary 11.6.0.82. The contents of this tag are located at Corollary 4.6.7.24.
Remark 11.6.0.83. The contents of this tag were moved to Proposition 7.3.3.11.
Corollary 11.6.0.84. See Proposition None.
Example 11.6.0.85. See Remark 6.2.4.3.
Remark 11.6.0.86. The contents of this tag are now at Example 7.1.1.6.
Example 11.6.0.87 (Path Spaces). See Warning 3.4.0.8.
Remark 11.6.0.88 (Comparison with the Fiber Product). The contents of this tag are now at Warning 3.4.0.8.
Proposition 11.6.0.89. The contents of this tag are now at Corollary 7.1.6.22.
Remark 11.6.0.90. The contents of this tag are now at Proposition 7.1.6.21.
Proposition 11.6.0.91. The contents of this tag are now split between Corollaries 7.2.2.3 and 7.2.2.10.
Proposition 11.6.0.92. The contents of this tag are now at Corollary None.
Corollary 11.6.0.93. The contents of this tag are now at Proposition 11.6.0.89.
Remark 11.6.0.94. The contents of this tag are now at Corollary 7.1.3.2.
Corollary 11.6.0.95. The contents of this tag are now at Variant 7.1.4.11.
Example 11.6.0.96. The contents of this tag are now at Remark 11.6.0.86.
Example 11.6.0.97. The contents of this tag are now at Proposition 5.6.6.21.
Lemma 11.6.0.98. The contents of this tag are now at Example 5.2.3.18.
Proposition 11.6.0.99. The contents of this tag are now at Corollary 4.3.3.25.
Definition 11.6.0.100. See Definition 5.6.5.1.
Corollary 11.6.0.101 (The Universal Cocartesian Fibration). The contents of this tag are now at Theorem 5.6.0.2.
Theorem 11.6.0.102 (Universality Theorem: Preliminary Version). See Theorem 5.6.0.2.
Corollary 11.6.0.103. The contents of this tag are now at Proposition 5.6.2.21.
Example 11.6.0.104 (Parametrized Covariant Transport). The contents of this tag are now at Definition 5.2.8.1.
Corollary 11.6.0.105. The contents of this tag are now at Proposition 5.2.8.8.
Proposition 11.6.0.106. The contents of this tag are now at Corollary 4.3.7.13.
Corollary 11.6.0.107. This tag is now at Lemma 11.9.8.6.
Example 11.6.0.108. The contents of this tag are now at Notation 5.2.2.9.
Example 11.6.0.109. The contents of this tag are now at Notation 5.2.2.18.
Example 11.6.0.110 (Parametrized Contravariant Transport). The contents of this tag are now at Variant 5.2.8.6.
Proposition 11.6.0.111. The contents of this tag are now at Corollary 4.6.4.19.
Example 11.6.0.112. The contents of this Example are now contained in Corollary 2.3.4.6.
Remark 11.6.0.113. The contents of this tag are now at Exercise None.
Remark 11.6.0.114. The contents of this tag are now at Construction 2.2.8.12.
Proposition 11.6.0.115. The contents of this tag are now at Corollary 5.6.1.16.
Variant 11.6.0.116. The contents of this tag are now contained in Definition 5.6.1.1.
Proposition 11.6.0.117. The contents of this tag are now at Exercise 5.0.0.6.
Variant 11.6.0.118. The contents of this tag are now part of Definition 5.0.0.1.
Proposition 11.6.0.119. The contents of this tag are now at Proposition 5.2.5.1.
Proposition 11.6.0.120. The contents of this tag are now at Corollary 4.4.5.9.
Lemma 11.6.0.121. The contents of this tag are now at Corollary None.
Lemma 11.6.0.122. The contents of this tag are now at Proposition 4.4.2.14.
Exercise 11.6.0.123. The contents of this tag are now mostly at Example None.
Proposition 11.6.0.124. The contents of this tag are essentially contained in Proposition 5.2.2.17.
Lemma 11.6.0.125. The contents of this tag are now at Corollary 4.4.3.8.
Proposition 11.6.0.126. The contents of this tag are now at Corollary 4.4.3.11.
Corollary 11.6.0.127. The contents of this tag are now contained in Proposition 4.4.2.13.
Lemma 11.6.0.128. The contents of this tag are now contained in Example 4.4.1.11.
Proposition 11.6.0.129. Let $f: X_{} \rightarrow S_{}$ be a morphism of simplicial sets. Then $f$ is a Kan fibration if and only if it is both a left fibration and a right fibration.
Variant 11.6.0.130 (Strictly Unitary $2$-Categories). The contents of this tag can be found in Definition 2.2.7.1. We say that a $2$-category $\operatorname{\mathcal{C}}$ is strictly unitary if, for every $1$-morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$, we have equalities and the left and right unit constraints $\lambda _{f}$, $\rho _{f}$ are the identity $2$-morphisms from $f$ to itself. Every strict $2$-category is strictly unitary, but the converse is false: we will see later that every $2$-category is isomorphic (in an appropriate sense) to a strictly unitary $2$-category (see Example 11.6.0.134).
Example 11.6.0.131. The contents of this tag can now be found in Remark 4.2.1.4.
Example 11.6.0.132. The contents of this tag can now be found in Remark 2.2.7.3. Let $\operatorname{\mathcal{C}}$ be a strictly unitary $2$-category (Variant 11.6.0.130). Then Proposition 2.2.1.16 can be formulated more simply as follows: for every pair of composable $1$-morphisms $X \xrightarrow {f} Y \xrightarrow {g} Z$, the associativity constraints $\alpha _{ \operatorname{id}_ Z, g, f}$ and $\alpha _{g,f,\operatorname{id}_ X}$ are equal to the identity (as $2$-morphisms from $g \circ f$ to itself).
Example 11.6.0.133. The contents of this tag are now contained in Proposition 1.4.5.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ constructed in Definition 1.4.5.3 is also a homotopy category of $\operatorname{\mathcal{C}}$ in the sense of Definition 1.3.6.1. More precisely, the map $u: \operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ of Construction 1.4.5.6 exhibits $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ as a homotopy category of $\operatorname{\mathcal{C}}$, by virtue of Proposition 1.4.5.7.
Example 11.6.0.134. The contents of this tag are now contained in Remark 2.2.7.6 and Proposition 2.2.7.7. Let $\operatorname{\mathcal{C}}$ be any $2$-category. Then the left and right unit constraints on $\operatorname{\mathcal{C}}$ determine a twisting cochain $\{ \mu _{g,f} \} $, given concretely by the formula Note that this prescription is consistent, since $\lambda _{f} = \rho _{g}$ in the special case where $f = g = \operatorname{id}_{Y}$ (Corollary 2.2.1.15). Let $\operatorname{\mathcal{C}}'$ be the twist of $\operatorname{\mathcal{C}}$ with respect to the cocycle $\{ \mu _{g,f} \} $. Then $\operatorname{\mathcal{C}}'$ is a strictly unitary $2$-category (in the sense of Variant 11.6.0.130), and Exercise 2.2.6.9 supplies a strictly unitary isomorphism of $2$-categories $\operatorname{\mathcal{C}}\simeq \operatorname{\mathcal{C}}'$ In particular, for every $2$-category $\operatorname{\mathcal{C}}$, there exists a strictly unitary isomorphism of $2$-categories $\operatorname{\mathcal{C}}\simeq \operatorname{\mathcal{C}}'$, where $\operatorname{\mathcal{C}}'$ is strictly unitary.
Proposition 11.6.0.135. Let $i: A_{} \hookrightarrow B_{}$ be an anodyne morphism of simplicial sets and let $f: X_{} \rightarrow S_{}$ be a Kan fibration. Then the induced map is a trivial Kan fibration.
Lemma 11.6.0.136. Let $f: A_{} \hookrightarrow B_{}$ and $f': A'_{} \hookrightarrow B'_{}$ be monomorphisms of simplicial sets. If either $f$ is anodyne, then the induced map is anodyne.
Proposition 11.6.0.137. Let $f: X_{} \rightarrow S_{}$ be a morphism of simplicial sets. The following conditions are equivalent:
The morphism $f$ is a right fibration.
For every pair of integers $0 < i \leq n$, every lifting problem
admits a solution (indicated by the dotted arrow).
Lemma 11.6.0.138. Let $q: X \rightarrow S$ be a left fibration of simplicial sets, where $S$ is a Kan complex. Suppose that $q$ induces a surjection $\pi _0(q): \pi _0(X) \rightarrow \pi _0(S)$. Then $q$ is surjective on vertices.
Proof. Fix a vertex $s \in S$. Since $\pi _0(q)$ is surjective, there exists a vertex $x \in X$ for which $q(x)$ and $s$ belong to the same connected component of $\pi _0(S)$. Since $S$ is a Kan complex, we can choose an edge $e: q(x) \rightarrow s$ in the simplicial set $S$. Our assumption that $q$ is a left fibration guarantees that we can write $e = q(\overline{e})$ for some edge $\overline{e}: x \rightarrow \overline{s}$ of the simplicial set $X$. In particular, there exists a vertex $\overline{s} \in X$ satisfying $q( \overline{s} ) = s$. $\square$
Remark 11.6.0.139. Assuming Theorem 5.2.2.20, one can give a more direct proof of ***. Let $q: X \rightarrow S$ be a left fibration of simplicial sets, where $S$ is a Kan complex. To show that $q$ is a Kan fibration, it will suffice (by virtue of Theorem 5.2.2.20) to show that the covariant transport functor $\mathrm{h} \mathit{S} \rightarrow \mathrm{h} \mathit{\operatorname{Kan}}$ carries every morphism in $\mathrm{h} \mathit{S}$ to an invertible morphism in $\mathrm{h} \mathit{\operatorname{Kan}}$. This is clear, since the homotopy category $\mathrm{h} \mathit{S}$ is a groupoid (Proposition 1.4.6.10).
Remark 11.6.0.140. Assuming Theorem 5.2.2.20, one can give a more direct proof of Proposition 4.4.2.14. Let $q: X \rightarrow S$ be a left fibration of simplicial sets with the property that, for every vertex $s \in S$, the fiber $X_{s}$ is a contractible Kan complex. For each edge $e: s \rightarrow s'$ of $S$, the covariant transport $e_{!}: X_{s} \rightarrow X_{s'}$ is a morphism between contractible Kan complexes, and is therefore automatically a homotopy equivalence. Applying Theorem 5.2.2.20, we deduce that $q$ is a Kan fibration. Since the fibers of $q$ are contractible, Proposition 3.3.7.6 guarantees that $q$ is a trivial Kan fibration.