Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.4.24. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \hookrightarrow Y$ be a monomorphism in $\operatorname{\mathcal{C}}$. If $f': X' \rightarrow Y'$ is a retract of $f$ (in the $\infty $-category $\operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}})$), then $f'$ is also a monomorphism. See Corollary 9.2.3.11.