Lemma 9.6.0.37. The contents of this tag are now at Example 5.2.3.18.
Proof. Let $n \geq 2$ be an integer. Unwinding the definitions, we see that the datum of a lifting problem
satisfying $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} ) } = f$ is equivalent to the datum of a diagram $\tau _0: \Lambda ^{n}_{0} \rightarrow \operatorname{\mathcal{D}}$ satisfying $\tau _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} )} = e$ (see Remark 5.2.4.2). Moreover, the lifting problem (5.19) admits a solution if and only if the corresponding map $\tau _0: \Lambda ^{n}_{0} \rightarrow \operatorname{\mathcal{D}}$ can be extended to an $n$-simplex of $\operatorname{\mathcal{D}}$. The desired equivalence now follows from the characterization of isomorphisms given in Theorem 4.4.2.6 $\square$