Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proof. Let $n \geq 2$ be an integer. Unwinding the definitions, we see that the datum of a lifting problem

5.19
\begin{equation} \begin{gathered}\label{equation:cocartesian-in-relative-join} \xymatrix@R =50pt@C=50pt{ \Lambda ^{n}_{0} \ar [r]^-{\sigma _0} \ar [d] & \operatorname{\mathcal{C}}\star _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}\ar [d]^-{\pi } \\ \Delta ^{n} \ar@ {-->}[ur]^{\sigma } \ar [r] & \Delta ^1 } \end{gathered} \end{equation}

satisfying $\sigma _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} ) } = f$ is equivalent to the datum of a diagram $\tau _0: \Lambda ^{n}_{0} \rightarrow \operatorname{\mathcal{D}}$ satisfying $\tau _0|_{ \operatorname{N}_{\bullet }( \{ 0 < 1 \} )} = e$ (see Remark 5.2.4.2). Moreover, the lifting problem (5.19) admits a solution if and only if the corresponding map $\tau _0: \Lambda ^{n}_{0} \rightarrow \operatorname{\mathcal{D}}$ can be extended to an $n$-simplex of $\operatorname{\mathcal{D}}$. The desired equivalence now follows from the characterization of isomorphisms given in Theorem 4.4.2.6 $\square$