Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 11.9.8.1. Let $\operatorname{\mathcal{D}}$ be an $\infty $-category. Then there exists an ordinary category $\operatorname{\mathcal{C}}$, a collection $W$ of morphisms in $\operatorname{\mathcal{C}}$, and a functor $F: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ which exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ with respect to $W$.