Proposition 11.9.8.1. Let $\operatorname{\mathcal{D}}$ be an $\infty $-category. Then there exists an ordinary category $\operatorname{\mathcal{C}}$, a collection $W$ of morphisms in $\operatorname{\mathcal{C}}$, and a functor $F: \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ which exhibits $\operatorname{\mathcal{D}}$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ with respect to $W$.
11.9.8 The Category of Simplices
This subsection has been replaced by §6.3.7.
Our goal in this section is to show that, up to equivalence, every $\infty $-category can be realized as a localization $\operatorname{\mathcal{C}}[W^{-1}]$, where $\operatorname{\mathcal{C}}$ is (the nerve of) an ordinary category. More precisely, we have the following:
We will deduce Proposition 11.9.8.1 from a more precise assertion (Theorem 11.9.8.4), which gives an explicit construction of the category $\operatorname{\mathcal{C}}$ and the class of morphisms $W$.
Construction 11.9.8.2 (The Last Vertex Map). Let $S$ be a simplicial set, let $\operatorname{{\bf \Delta }}_{S}$ denote the category of simplices of $S$ (Construction 1.1.3.9), and let $\tau $ be a $k$-simplex of the nerve $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S})$, which we identify with a commutative diagram of simplicial sets We let $\lambda ^{+}_{S}(\tau ): \Delta ^{k} \rightarrow S$ denote the map given by the composition where $f$ carries each vertex $\{ i\} \subseteq \Delta ^{k}$ to the image of the last vertex $\{ n_ i \} \subseteq \Delta ^{n_ i}$ under the composite map $\Delta ^{n_ i} \rightarrow \Delta ^{n_{i+1}} \rightarrow \cdots \rightarrow \Delta ^{n_ k}$. The construction $\tau \mapsto \lambda ^{+}_{S}(\tau )$ determines a morphism of simplicial sets $\lambda ^{+}_{S}: \operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S} ) \rightarrow S$, which we will refer to as the last vertex map. By construction, it carries each object $([n], \sigma ) \in \operatorname{{\bf \Delta }}_{S}$ to the vertex $\sigma (n) \in S$.
Warning 11.9.8.3. Let $S$ be a simplicial set. We have now assigned two different meanings to the term “last vertex map”:
The last vertex map $\lambda _{S}$ of Construction 3.3.4.3, which is a morphism of simplicial sets from the subdivision $\operatorname{Sd}(S)$ to $S$.
The last vertex map $\lambda _{S}^+$ of Construction 11.9.8.2, which is a morphism of simplicial sets from the nerve $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{S} )$ to $S$.
These meanings are closely related. If the simplicial set $S$ is braced (Definition 3.3.1.1), then we can identify the subdivision $\operatorname{Sd}(S)$ with the nerve of the full subcategory $\operatorname{{\bf \Delta }}^{\mathrm{nd}}_{S} \subseteq \operatorname{{\bf \Delta }}_{S}$ spanned by the nondegenerate simplices of $S$ (Proposition 3.3.3.17). Under this identification, the last vertex map $\lambda _{S}$ of Construction 3.3.4.3 is given by the composition
where $\lambda ^{+}_{S}$ is the last vertex map of Construction 11.9.8.2 (Example 3.3.4.7).
Proposition 11.9.8.1 is an immediate consequence of the following:
Theorem 11.9.8.4. Let $S$ be a simplicial set, and let $W_{S}$ be the collection of all morphisms $([n], \sigma ) \rightarrow ([n'], \sigma ')$ in the category of simplices $\operatorname{{\bf \Delta }}_{S}$ for which the underlying map of linearly ordered sets $\alpha : [n] \rightarrow [n']$ satisfies $\alpha (n) = n'$. Then the last vertex map $\lambda _{S}^{+}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{S} ) \rightarrow S$ exhibits $S$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S} )$ with respect to $W_{S}$.
From Theorem 11.9.8.4, we immediately deduce the following variant of Proposition 3.3.4.8:
Corollary 11.9.8.5. Let $S$ be a simplicial set. Then the last vertex map $\lambda _{S}^{+}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{S} ) \rightarrow S$ is a weak homotopy equivalence.
Proof. Combine Theorem 11.9.8.4 with Remark 6.3.1.16. $\square$
The rest of this section is devoted to the proof of Theorem 11.9.8.4. We begin by treating the situation where $S = \Delta ^ n$ is a standard simplex.
Lemma 11.9.8.6. For each nonnegative integer $n$, the last vertex map exhibits $\Delta ^ n$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{\Delta ^ n} )$ with respect to the collection of morphisms $W_{\Delta ^ n}$ appearing in the statement of Theorem 11.9.8.4.
Proof. Note that we can identify $\lambda _{\Delta ^ n}^{+}$ with a functor of ordinary categories $\operatorname{{\bf \Delta }}_{\Delta ^ n} \rightarrow [n]$, which carries each simplex $\sigma : \Delta ^ m \rightarrow \Delta ^ n$ to its last vertex $\sigma (m)$. Let $G: [n] \rightarrow \operatorname{{\bf \Delta }}_{\Delta ^ n}$, be the functor which carries each element $m \in [n]$ to the map $\sigma : \Delta ^ m \rightarrow \Delta ^ n$ which is the identity on vertices. Note that the identity transformation $\lambda _{\Delta ^{n}}^{+} \circ G \xrightarrow {\sim } \operatorname{id}_{[n]}$ is the counit of an adjunction, so that $\lambda _{ \Delta ^{n} }$ is a reflective localization functor. The desired result is now a special case of Proposition 11.6.0.48. $\square$
We will prove Theorem 11.9.8.4 for a general simplicial set $S$ by writing $S$ as a colimit of simplices, for which the desired result holds by virtue of Lemma 11.9.8.6. First, we need a variant of Lemma 3.3.3.19:
Lemma 11.9.8.7. The functor commutes with the formation of colimits.
Proof. Fix an integer $n \geq 0$; we wish to show that the set-valued functor $S \mapsto \operatorname{N}_{n}( \operatorname{{\bf \Delta }}_{S} )$ commutes with colimits. For every $n$-simplex $\tau $ of $\operatorname{N}_{n}(\operatorname{{\bf \Delta }})$, let us write $\operatorname{N}_{n}(\operatorname{{\bf \Delta }}_{S} )_{\tau }$ for the inverse image of $\tau $ under the natural map $\operatorname{N}_{n}(\operatorname{{\bf \Delta }}_{S} ) \rightarrow \operatorname{N}_{n}( \operatorname{{\bf \Delta }})$, so that we have a decomposition
depending functorially on $S$. It will therefore suffice to show that, for each $\tau $, the functor
commutes with colimits. We now observe that, if $\tau $ corresponds to a diagram $[m_0] \rightarrow [m_1] \rightarrow \cdots \rightarrow [m_ n]$ in the category $\operatorname{{\bf \Delta }}$, then $\operatorname{N}_{n}(\operatorname{{\bf \Delta }}_{S} )_{\tau }$ can be identified with the set of $m_ n$-simplices of $S$. $\square$
Proof of Theorem 11.9.8.4. Let $S$ be a simplicial set and let $W_{S}$ be the collection of morphisms in $\operatorname{{\bf \Delta }}_{S} $ appearing in the statement of Theorem 11.9.8.4; we wish to show that the last vertex map $\lambda _{S}^{+}: \operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{S} ) \rightarrow S$ exhibits $S$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S} )$ with respect to $W_{S}$. Using Lemma 11.9.8.7, we can realize $\lambda _{S}^{+}$ as a filtered colimit of morphisms $\lambda _{S_{\alpha }}^{+}$ (and $W_{S}$ with a filtered colimit of $W_{S_{\alpha } }$), where $\{ S_{\alpha } \} $ is the collection of all finite simplicial subsets of $S$ (Remark 3.6.1.8). By virtue of Proposition 6.3.4.1, it will suffice to show that each $\lambda _{S_{\alpha }}^{+}$ exhibits $S_{\alpha }$ as a localization of $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S_{\alpha }} )$ with respect to $W_{S_{\alpha }}$. We may therefore replace $S$ by $S_{\alpha }$, and thereby reduce to the case where the simplicial set $S$ is finite.
Since $S$ is a finite simplicial set, it has dimension $\leq n$ for some integer $n \geq -1$. We proceed by induction on $n$. If $n = -1$, then both $S$ and $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S} )$ are empty, and the desired result is clear. We may therefore assume that $n \geq 0$ and that Theorem 11.9.8.4 holds for all finite simplicial sets of dimension $< n$. We now proceed by induction on the number $m$ of nondegenerate $n$-simplices of $S$. If $m = 0$, then $S$ has dimension $\leq n-1$ and the desired result holds by virtue of our first inductive hypothesis. We may therefore assume that $S$ has at least one nondegenerate $n$-simplex $\sigma : \Delta ^ n \rightarrow S$. Using Proposition 1.1.4.12, we see that there is a pushout diagram of simplicial sets
where $S'$ is a simplicial set of dimension $\leq n$ with exactly $(m-1)$-nondegenerate $m$-simplices. It follows from our inductive hypotheses together with Lemma 11.9.8.6 that the simplicial sets $\operatorname{\partial \Delta }^ n$, $\Delta ^ n$, and $S'$ satisfy the conclusion of Theorem 11.9.8.4. Moreover, the last vertex map $\lambda _{S}^{+}$ fits into a commutative diagram
where the front and back faces are pushout squares (Lemma 11.9.8.7) in which the horizontal maps are monomorphisms, hence categorical pushout squares (Example 4.5.4.12). Since $W_{S}$ is the union of the images of $W_{S'}$ and $W_{ \Delta ^ n }$, it follows from Proposition 6.3.4.2 that $\lambda _{S}^{+}$ exhibits $S$ as a localization of $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{S} )$ with respect to $W_{S}$. $\square$
Exercise 11.9.8.8. Let $S$ be a simplicial set and let $\operatorname{Sd}(S)$ denote the subdivision of $S$. Let $W$ be the collection of all edges $w$ of $\operatorname{Sd}(S)$ with the following property: there exists a simplex $\sigma : \Delta ^ n \rightarrow S$ such that $w = \operatorname{Sd}(\sigma )(\overline{w})$, where $\overline{w}$ is an edge of the subdivision $\operatorname{Sd}( \Delta ^ n ) \simeq \operatorname{N}_{\bullet }( \operatorname{Chain}[n] )$ corresponding to a pair of subsets $\emptyset \neq P \subseteq Q \subseteq [n]$ satisfying $\mathrm{max}(P) = \mathrm{max}(Q)$. Show that the last vertex map $\lambda _{S}: \operatorname{Sd}(S) \rightarrow S$ of Construction 3.3.4.3 exhibits $S$ as a localization of $\operatorname{Sd}(S)$ with respect to $W$.