Construction 11.9.8.2 (The Last Vertex Map). Let $S$ be a simplicial set, let $\operatorname{{\bf \Delta }}_{S}$ denote the category of simplices of $S$ (Construction 1.1.3.9), and let $\tau $ be a $k$-simplex of the nerve $\operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S})$, which we identify with a commutative diagram of simplicial sets
We let $\lambda ^{+}_{S}(\tau ): \Delta ^{k} \rightarrow S$ denote the map given by the composition
where $f$ carries each vertex $\{ i\} \subseteq \Delta ^{k}$ to the image of the last vertex $\{ n_ i \} \subseteq \Delta ^{n_ i}$ under the composite map $\Delta ^{n_ i} \rightarrow \Delta ^{n_{i+1}} \rightarrow \cdots \rightarrow \Delta ^{n_ k}$. The construction $\tau \mapsto \lambda ^{+}_{S}(\tau )$ determines a morphism of simplicial sets $\lambda ^{+}_{S}: \operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{S} ) \rightarrow S$, which we will refer to as the last vertex map. By construction, it carries each object $([n], \sigma ) \in \operatorname{{\bf \Delta }}_{S}$ to the vertex $\sigma (n) \in S$.