5.5.1 The $\infty $-Category of Spaces
We begin by introducing a refinement of Construction 3.1.5.10.
Construction 5.5.1.1 (The $\infty $-Category of Spaces). Let $\operatorname{Kan}$ denote the category of Kan complexes. We view $\operatorname{Kan}$ as a simplicial category, with simplicial morphism sets given by the construction
\[ \operatorname{Hom}_{\operatorname{Kan}}(X,Y)_{\bullet } = \operatorname{Fun}(X,Y). \]
We let $\operatorname{\mathcal{S}}$ denote the homotopy coherent nerve $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{Kan})$ (Definition 2.4.3.5). We will refer to $\operatorname{\mathcal{S}}$ as the $\infty $-category of spaces.
Proposition 5.5.1.2. The simplicial set $\operatorname{\mathcal{S}}$ is an $\infty $-category.
Proof.
By virtue of Theorem 2.4.5.1, it suffices to show that the simplicial category $\operatorname{Kan}$ is locally Kan: that is, for every pair of Kan complexes $X$ and $Y$, the simplicial set $\operatorname{Fun}(X,Y)$ is also a Kan complex. This is a special case of Corollary 3.1.3.4.
$\square$
However, $\iota $ is not bijective on simplices of dimension $\geq 2$. For example, $2$-simplices of $\operatorname{\mathcal{S}}$ can be identified with diagrams of Kan complexes
\[ \xymatrix@R =50pt@C=50pt{ & Y \ar [dr]^{g} \ar@ {=>}[]+<0pt,-15pt>;+<0pt,-60pt>^-{\mu } & \\ X \ar [ur]^{f} \ar [rr]_{h} & & Z } \]
which commute up to a specified homotopy $\mu : (g \circ f) \rightarrow h$.
Note that if $\operatorname{\mathcal{C}}$ is a groupoid, then the nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is a Kan complex (Proposition 1.3.5.2). By virtue of Proposition 1.5.3.3, the construction $\operatorname{\mathcal{C}}\mapsto \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ determines a fully faithful embedding of simplicial categories $\mathbf{Gpd}_{\bullet } \hookrightarrow \operatorname{Kan}$. Passing to homotopy coherent nerves and invoking Example 2.4.3.11, we obtain a functor of $\infty $-categories
\[ \operatorname{N}^{\operatorname{D}}_{\bullet }( \mathbf{Gpd} ) \simeq \operatorname{N}^{\operatorname{hc}}_{\bullet }( \mathbf{Gpd}_{\bullet } ) \hookrightarrow \operatorname{N}^{\operatorname{hc}}_{\bullet }( \operatorname{Kan}) = \operatorname{\mathcal{S}}, \]
where $\operatorname{N}^{\operatorname{D}}_{\bullet }( \mathbf{Gpd} )$ is the Duskin nerve of the $2$-category $\mathbf{Gpd}$ (Construction 2.3.1.1). This functor restricts to an isomorphism of $\operatorname{N}^{\operatorname{D}}_{\bullet }( \mathbf{Gpd} )$ with the full subcategory of $\operatorname{\mathcal{S}}$ spanned by those Kan complexes of the form $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, where $\operatorname{\mathcal{C}}$ is a small groupoid. We can informally summarize the situation informally by saying that the $\infty $-category $\operatorname{\mathcal{S}}$ is an enlargement of the $2$-category of groupoids $\mathbf{Gpd}$.