Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Warning 5.6.2.7. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be a functor of ordinary categories. Passing to the homotopy coherent nerve, we obtain a functor of $\infty $-categories $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F}): \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{QC}}$. Beware that the simplicial set $\int _{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F})$ is usually not isomorphic to the weighted nerve $\operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ of Definition 5.3.3.1, even in the special case $\operatorname{\mathcal{C}}= \Delta ^{0}$. However, in ยง5.6.4 we will construct a comparison map

\[ \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \int _{\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \operatorname{N}_{\bullet }^{\operatorname{hc}}(\mathscr {F}) \]

which is an equivalence of $\infty $-categories (Proposition 5.6.4.8).