Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Variant 10.1.1.3. Let $K$ be a simplicial set. We say that $K$ is cosifted if, for every finite set $I$, the diagonal map $K \rightarrow K^{I}$ is left cofinal. Equivalently, $K$ is cosifted if and only if the opposite simplicial set $K^{\operatorname{op}}$ is sifted.