Proposition 7.1.5.16. Let $U: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Then:
- $(1)$
An object $Y \in \operatorname{\mathcal{C}}$ is $U$-initial if and only if $U$ induces an equivalence of $\infty $-categories $U': \operatorname{\mathcal{C}}_{Y/} \rightarrow \operatorname{\mathcal{C}}\times _{ \operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}_{ U(Y) / }$.
- $(2)$
An object $Y \in \operatorname{\mathcal{C}}$ is $U$-final if and only if $U$ induces an equivalence of $\infty $-categories $U'': \operatorname{\mathcal{C}}_{/Y} \rightarrow \operatorname{\mathcal{C}}\times _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{D}}_{/U(Y)}$.