Corollary 4.5.7.4. A commutative diagram of $\infty $-categories
is a categorical pullback square if and only if the induced diagram of Kan complexes
is a homotopy pullback square.
Corollary 4.5.7.4. A commutative diagram of $\infty $-categories
is a categorical pullback square if and only if the induced diagram of Kan complexes
is a homotopy pullback square.
Proof. We proceed as in the proof of Proposition 4.5.2.14. By definition, the diagram (4.43) is a categorical pullback square if and only if the induced map $\theta : \operatorname{\mathcal{C}}_{01} \rightarrow \operatorname{\mathcal{C}}_{0} \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_1$ is an equivalence of $\infty $-categories. Using the criterion of Theorem 4.5.7.1, we see that this is equivalent to the requirement that $\theta $ induces a homotopy equivalence of Kan complexes $\rho : \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{C}}_{01} )^{\simeq } \rightarrow \operatorname{Fun}(\Delta ^1, \operatorname{\mathcal{C}}_{0} \times ^{\mathrm{h}}_{\operatorname{\mathcal{C}}} \operatorname{\mathcal{C}}_1)^{\simeq }$. Using Remarks 4.5.2.6 and 4.5.2.7, we can identify $\rho $ with the map
determined by the commutative diagram (4.44). The desired result now follows from the criterion of Corollary 3.4.1.6. $\square$