# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

### 5.3.5 Application: Classification of Cocartesian Fibrations

Let $\operatorname{\mathcal{C}}$ be a category. In this section, we apply the results of ยง5.3.4 to classify cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ up to equivalence. First, we need to introduce a bit of terminology.

Definition 5.3.5.1. Let $\operatorname{\mathcal{C}}$ be a category and let $\mathscr {F}_0, \mathscr {F}_{1}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be diagrams of $\infty$-categories indexed by $\operatorname{\mathcal{C}}$. We will say that $\mathscr {F}_0$ and $\mathscr {F}_1$ are levelwise equivalent if there exists another diagram $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ equipped with levelwise categorical equivalences $\mathscr {F}_0 \rightarrow \mathscr {F} \leftarrow \mathscr {F}_1$ (see Definition 4.5.6.1).

Proposition 5.3.5.2. Let $\operatorname{\mathcal{C}}$ be a category and suppose we are given a pair of functors $\mathscr {F}_0, \mathscr {F}_1 \rightarrow \operatorname{\mathcal{C}}$. Then $\mathscr {F}_0$ is levelwise equivalent to $\mathscr {F}_1$ (in the sense of Definition 5.3.5.1) if and only if the cocartesian fibrations $U_0: \operatorname{N}_{\bullet }^{\mathscr {F}_0}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ and $U_1: \operatorname{N}_{\bullet }^{\mathscr {F}_1}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ are equivalent (in the sense of Definition 5.1.6.1).

Corollary 5.3.5.3. For every category $\operatorname{\mathcal{C}}$, levelwise equivalence determines an equivalence relation on the set of functors from $\operatorname{\mathcal{C}}$ to $\operatorname{QCat}$.

Proof of Proposition 5.3.5.2. Assume first that the functors $\mathscr {F}_0, \mathscr {F}_1: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ are levelwise equivalent. Then there exists a functor $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ together with levelwise categorical equivalences $\mathscr {F}_0 \rightarrow \mathscr {F} \leftarrow \mathscr {F}_1$. Applying Corollary 5.3.3.17, we see that the induced maps $\operatorname{N}_{\bullet }^{\mathscr {F}_0}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \leftarrow \operatorname{N}_{\bullet }^{\mathscr {F}_1}(\operatorname{\mathcal{C}})$ are equivalences of cocartesian fibrations over $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$.

We now prove the converse. Suppose that there exists a functor $T: \operatorname{N}_{\bullet }^{\mathscr {F}_0}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}_1}(\operatorname{\mathcal{C}})$ which is an equivalence of cocartesian fibrations over $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. Let $\lambda _0: \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}_0) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}_0}(\operatorname{\mathcal{C}})$ and $\lambda _{1}: \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}_1) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}_1}(\operatorname{\mathcal{C}})$ be the taut scaffolds of Construction 5.3.4.11. Then $T \circ \lambda _0$ is a scaffold of the cocartesian fibration $U_1$ (Remark 5.3.4.6). Applying Remark 5.3.4.10, we obtain levelwise categorical equivalences $\mathscr {F}_0 \rightarrow \operatorname{sTr}_{ \operatorname{N}_{\bullet }^{\mathscr {F}_1}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}} \leftarrow \mathscr {F}_1$. $\square$

Warning 5.3.5.5. Let $\operatorname{\mathcal{C}}$ be a category and let $\mathscr {F}_0, \mathscr {F}_1: \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ be diagrams. The assumption that $\mathscr {F}_0$ is levelwise equivalent to $\mathscr {F}_1$ (in the sense of Definition 5.3.5.1) does not guarantee the existence of a levelwise categorical equivalence directly from $\mathscr {F}_0$ to $\mathscr {F}_1$ (or in the opposite direction).

Theorem 5.3.5.6. Let $\operatorname{\mathcal{C}}$ be a category. Then the weighted nerve functor $\mathscr {F} \mapsto \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ induces a bijection

$\xymatrix@R =50pt@C=50pt{ \{ \textnormal{Diagrams \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}} \} / \textnormal{Levelwise Equivalence} \ar [d] \\ \{ \textnormal{Cocartesian Fibrations \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \} / \textnormal{Equivalence}. }$

The inverse bijection carries (the equivalence class of) a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ to (the equivalence class of) the strict transport representation $\operatorname{sTr}_{ \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}}$.

We will deduce Theorem 5.3.5.6 from the following result, which we prove at the end of this section:

Theorem 5.3.5.7. Let $\operatorname{\mathcal{C}}$ be a category, let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a functor, and suppose we are given a commutative diagram of simplicial sets

$\xymatrix@R =50pt@C=50pt{ \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \ar [rr]^{ \lambda } \ar [dr] & & \operatorname{\mathcal{E}}\ar [dl]_{U} \\ & \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}), & }$

where $\operatorname{\mathcal{E}}$ is an $\infty$-category. The following conditions are equivalent:

$(1)$

The functor $U$ is a cocartesian fibration and $\lambda$ is a scaffold.

$(2)$

The morphism $\lambda$ is a categorical equivalence of simplicial sets.

Corollary 5.3.5.8. Let $\operatorname{\mathcal{C}}$ be a category, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be a cocartesian fibration of $\infty$-categories, and let $\operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ denote the strict transport representation of Construction 5.3.1.5. Then the universal scaffold $\lambda _{u}: \underset { \longrightarrow }{\mathrm{holim}}( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}} ) \rightarrow \operatorname{\mathcal{E}}$ of Construction 5.3.4.7 is a categorical equivalence of simplicial sets.

Corollary 5.3.5.9. Let $\mathscr {F}: \operatorname{\mathcal{C}}\rightarrow \operatorname{Set_{\Delta }}$ be a diagram of simplicial sets. Then the morphism $\lambda _{t}: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ of Construction 5.3.4.11 is a categorical equivalence of simplicial sets.

Proof. Using Proposition 4.1.3.2, we can choose a diagram of $\infty$-categories $\mathscr {F}': \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}$ and a levelwise categorical equivalence $\alpha : \mathscr {F} \rightarrow \mathscr {F}'$. We then have a commutative diagram of simplicial sets

$\xymatrix@R =50pt@C=50pt{ \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \ar [r]^{\lambda _{t}} \ar [d] & \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \ar [d] \\ \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}' ) \ar [r]^{ \lambda '_{t} } & \operatorname{N}_{\bullet }^{\mathscr {F}'}(\operatorname{\mathcal{C}}) }$

where the horizontal maps are given by Construction 5.3.4.11 and the vertical maps are induced by the natural transformation $\alpha$. Since $\alpha$ is a levelwise categorical equivalence, Variant 5.3.2.19 and Corollary 5.3.3.17 guarantee that the vertical maps are categorical equivalences of simplicial sets. Consequently, to show that $\lambda _{t}$ is a categorical equivalence, it will suffice to show that $\lambda '_{t}$ is a categorical equivalence. This is a special case of Theorem 5.3.5.7, since $\lambda '_{t}$ is a scaffold of the cocartesian fibration $\operatorname{N}_{\bullet }^{\mathscr {F}'}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ (Proposition 5.3.4.17). $\square$

Proof of Theorem 5.3.5.6. Let $\operatorname{\mathcal{C}}$ be a category. It follows from Proposition 5.3.5.2 that the construction $\mathscr {F} \mapsto \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ determines an injective function

$\xymatrix@R =50pt@C=50pt{ \{ \textnormal{Diagrams \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}} \} / \textnormal{Levelwise Equivalence} \ar [d]^{\Phi } \\ \{ \textnormal{Cocartesian Fibrations \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \} / \textnormal{Equivalence}. }$

Moreover, the construction $(U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) ) \mapsto \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ carries equivalences of cocartesian fibrations over $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ to levelwise categorical equivalences, and therefore induces a function

$\xymatrix@R =50pt@C=50pt{ \{ \textnormal{Cocartesian Fibrations \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})} \} / \textnormal{Equivalence} \ar [d]^{\Psi } \\ \{ \textnormal{Diagrams \operatorname{\mathcal{C}}\rightarrow \operatorname{QCat}} \} / \textnormal{Levelwise Equivalence} }$

in the opposite direction. We will show that $\Phi \circ \Psi$ is equal to the identity; it will then follow that $\Phi$ is a bijection and that $\Psi = \Phi ^{-1}$ is the inverse bijection.

Fix a cocartesian fibration $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, let $\mathscr {F} = \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ denote its strict transport representation, and let $U': \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be the projection map. We wish to show that $U$ and $U'$ are equivalent as cocartesian fibrations over $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. Let $\lambda _{u}: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{\mathcal{E}}$ denote the universal scaffold (Construction 5.3.4.7) and let $\lambda _{t}: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}})$ denote the taut scaffold (Construction 5.3.4.11). Then $\lambda _{t}$ is a categorical equivalence of simplicial sets (Corollary 5.3.5.9). Applying Corollary 4.5.2.28, we see that precomposition with $\lambda _{t}$ induces an equivalence of $\infty$-categories

$\operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}}) \rightarrow \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}), \operatorname{\mathcal{E}}).$

In particular, there exists a morphism $T: \operatorname{N}_{\bullet }^{\mathscr {F}}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{E}}$ such that $U \circ T = U'$ and $T \circ \lambda _{t}$ is isomorphic to $\lambda _{u}$ (as an object of the $\infty$-category $\operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F}), \operatorname{\mathcal{E}})$). Since $\lambda _{u}$ is a categorical equivalence of simplicial sets (Corollary 5.3.5.8), it follows that $T \circ \lambda _{t}$ is also a categorical equivalence of simplicial sets (Corollary 4.5.3.9). Applying the two-out-of-three property, we see that $T$ is an equivalence of $\infty$-categories (Remark 4.5.3.5) and therefore an equivalence of cocartesian fibrations over $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ (Proposition 5.1.6.5). $\square$

Proof of Theorem 5.3.5.7. We first show that $(1)$ implies $(2)$. Assume that $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is a cocartesian fibration of simplicial sets and let $\lambda : \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{\mathcal{E}}$ be a scaffold of $U$; we wish to show that $\lambda$ is a categorical equivalence of simplicial sets. By virtue of Corollary 4.5.7.3, it will suffice to show that for every $n$-simplex $\sigma : \Delta ^ n \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$, the induced map

$\Delta ^{n} \times _{ \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}) } \underset { \longrightarrow }{\mathrm{holim}}(\mathscr {F} ) \rightarrow \Delta ^{n} \times _{ \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) } \operatorname{\mathcal{E}}$

is a categorical equivalence of simplicial sets. We may therefore assume without loss of generality that the category $\operatorname{\mathcal{C}}$ is a linearly ordered set of the form $[n] = \{ 0 < 1 < \cdots < n \}$ for some $n \geq 0$.

We proceed by induction on $n$. If $n = 0$, the result is clear. Let us therefore assume that $n > 0$. Let $S = \operatorname{N}_{\bullet }( \{ 1 < \cdots < n \} )$ be the $0$th face of the simplex $\Delta ^ n$ and set $\operatorname{\mathcal{E}}_{+} = S \times _{\Delta ^ n} \operatorname{\mathcal{E}}$. Let $\mathscr {F}_{+}$ denote the restriction of $\mathscr {F}$ to the subcategory $\{ 1 < \cdots < n \} \subset [n]$, so that our inductive hypothesis guarantees that $\lambda$ restricts to a categorical equivalence $\lambda _{+}: \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}_{+}) \rightarrow \operatorname{\mathcal{E}}_{+}$. Note that Remark 5.3.2.12 supplies an isomorphism of simplicial sets

$( \Delta ^ n \times \mathscr {F}(0) ) \coprod _{ (S \times \mathscr {F}(0)) } \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}_{+} ) \rightarrow \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ).$

Let $V: \Delta ^{n} \rightarrow \Delta ^1$ be the morphism given on vertices by the formula $V(i) = \begin{cases} 0 & \textnormal{ if } i = 0 \\ 1 & \textnormal{ if } i > 0.\end{cases}$ Then $V$ is a cocartesian fibration of simplicial sets, and the edge $\operatorname{N}_{\bullet }( \{ 0 < 1 \} ) \subseteq \Delta ^ n$ is $V$-cocartesian. It follows that, for every vertex $x$ of the simplicial set $\mathscr {F}(0)$, the composite map

$\Delta ^1 \times \{ x\} \hookrightarrow \Delta ^ n \times \mathscr {F}(0) \rightarrow \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \xrightarrow {\lambda } \operatorname{\mathcal{E}}$

is a $(V \circ U)$-cocartesian edge of $\operatorname{\mathcal{E}}$. Applying Theorem 5.2.4.1 to the cocartesian fibration $V \circ U$, we deduce that the composition

\begin{eqnarray*} ( \Delta ^1 \times \mathscr {F}(0) ) \coprod _{ ( \{ 1\} \times \mathscr {F}(0) ) } \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}_{+} ) & \xrightarrow {\iota } & ( \Delta ^{n} \times \mathscr {F}(0) ) \coprod _{ (S \times \mathscr {F}(0) ) } \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F}_{+} ) \\ & \simeq & \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \\ & \xrightarrow {\lambda } & \operatorname{\mathcal{E}}. \end{eqnarray*}

is a categorical equivalence of simplicial sets. Consequently, to show that $\lambda$ is a categorical equivalence of simplicial sets, it will suffice to show that $\iota$ is inner anodyne. By construction, $\iota$ is a pushout of the inclusion map

$( \Delta ^1 \coprod _{ \{ 1\} } S ) \times \mathscr {F}(0) \rightarrow \Delta ^ n \times \mathscr {F}(0).$

By virtue of Lemma 1.4.7.5, it will suffice to show that the inclusion map $\Delta ^1 \coprod _{ \{ 1\} } S \hookrightarrow \Delta ^ n$ is inner anodyne. This is a special case of Example 4.3.6.5, since the inclusion $\{ 1\} \hookrightarrow S$ is left anodyne (Lemma 4.3.7.8).

We now show that $(2)$ implies $(1)$. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be a functor of $\infty$-categories, and suppose that $\lambda : \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{\mathcal{E}}$ is a categorical equivalence of simplicial sets such that $U \circ \lambda$ is equal to the projection map $\underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$. We first claim that $U$ is an isofibration of $\infty$-categories. Since $\operatorname{\mathcal{E}}$ is an $\infty$-category, the morphism $U$ is an inner fibration (Proposition 4.1.1.10). It will therefore suffice to show that, for each object $\widetilde{C} \in \operatorname{\mathcal{E}}$ having image $C = U( \widetilde{C} ) \in \operatorname{\mathcal{C}}$ and every isomorphism $e: C \rightarrow D$ of $\operatorname{\mathcal{C}}$, there exists an isomorphism $\widetilde{e}: \widetilde{C} \rightarrow \widetilde{D}$ in $\operatorname{\mathcal{E}}$ satisfying $U( \widetilde{e} ) = e$. Since $\lambda$ is a categorical equivalence, we can choose a vertex $v$ of $\underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} )$ and an isomorphism $\widetilde{f}: \widetilde{C} \rightarrow \lambda (v)$ in $\operatorname{\mathcal{E}}$. Let us identify $v$ with a pair $(C',X)$, where $C'$ is an object of $\operatorname{\mathcal{C}}$ and $X$ is a vertex of the simplicial set $\mathscr {F}(C')$. Then $f = U( \widetilde{f} )$ is an isomorphism from $C$ to $C'$ in the category $\operatorname{\mathcal{C}}$. Replacing $v$ by the pair $(C, \mathscr {F}(f^{-1})(X) )$, we can reduce to the case where $C' = C$ and $f = \operatorname{id}_{C}$ so that $\widetilde{f}$ is an isomorphism in the $\infty$-category $\operatorname{\mathcal{E}}_{C}$. In this case, we can take $\widetilde{e}$ to be any composition of $\widetilde{f}$ with the morphism $\lambda (e, \operatorname{id}_ X ): \lambda (C, X) \rightarrow \lambda (D, \mathscr {F}(e)(X) )$ of $\operatorname{\mathcal{E}}$. This completes the proof that $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is an isofibration.

Using Corollary 5.3.4.18, we can choose a cocartesian fibration $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}})$ and a scaffold $\lambda ': \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ) \rightarrow \operatorname{\mathcal{E}}'$. Then $U'$ is an isofibration, so composition with $\lambda$ induces a categorical equivalence $\operatorname{Fun}_{ / \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) \rightarrow \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ), \operatorname{\mathcal{E}}' )$ (Corollary 4.5.2.28). It follows that there exists a functor $F: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{E}}'$ satisfying $U' \circ F = U$ such that $F \circ \lambda$ is isomorphic to $\lambda '$ as an object of the $\infty$-category $\operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \underset { \longrightarrow }{\mathrm{holim}}( \mathscr {F} ), \operatorname{\mathcal{E}}' )$. Since $\lambda '$ is a categorical equivalence of simplicial sets, the morphism $F \circ \lambda$ is also a categorical equivalence of simplicial sets (Corollary 4.5.3.9). Applying the two-out-of-three property (Remark 4.5.3.5), we deduce that $F$ is an equivalence of $\infty$-categories. It follows that $U$ is also a cocartesian fibration (Corollary 5.1.5.2) and that $\lambda$ is a scaffold of $U$ (Remark 5.3.4.6). $\square$

We close this section by recording another consequence of Theorem 5.3.5.7.

Corollary 5.3.5.11. Let $\operatorname{\mathcal{C}}$ be a category, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be a cocartesian fibration of $\infty$-categories, and let $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be an isofibration of $\infty$-categories. Then the composite map

\begin{eqnarray*} \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) & \xrightarrow {\theta } & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \operatorname{wTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}, \operatorname{wTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}} )_{\bullet } \\ & \rightarrow & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}, \operatorname{wTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}} )_{\bullet } \end{eqnarray*}

is an equivalence of $\infty$-categories.

Proof. Using Corollary 5.3.2.23, we can identify $\theta$ with the functor

$\operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) \rightarrow \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \underset { \longrightarrow }{\mathrm{holim}}( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}), \operatorname{\mathcal{E}}' )$

given by precomposition with the universal scaffold $\lambda _{u}$. The desired result now follows by combining Corollaries 5.3.5.8 and 4.5.2.28. $\square$

Corollary 5.3.5.12. Let $\operatorname{\mathcal{C}}$ be a category and let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ and $U': \operatorname{\mathcal{E}}' \rightarrow \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ be cocartesian fibrations of $\infty$-categories, having strict transport representations $\operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}$ and $\operatorname{sTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}}$, respectively. Then the tautological map

$\operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) \rightarrow \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}, \operatorname{sTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}})_{\bullet }$

is an equivalence of $\infty$-categories.

Proof. By virtue of Remark 5.3.4.10, we have a pullback diagram of $\infty$-categories

$\xymatrix@R =50pt@C=50pt{ \operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) \ar [d] \ar [r] & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}, \operatorname{sTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}} )_{\bullet } \ar [d] \\ \operatorname{Fun}_{ / \operatorname{N}_{\bullet }(\operatorname{\mathcal{C}}) }( \operatorname{\mathcal{E}}, \operatorname{\mathcal{E}}' ) \ar [r] & \operatorname{Hom}_{ \operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{Set_{\Delta }}) }( \operatorname{sTr}_{\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}}, \operatorname{wTr}_{\operatorname{\mathcal{E}}'/\operatorname{\mathcal{C}}} )_{\bullet }, }$

where the vertical maps are inclusions of replete full subcategories (and are therefore isofibrations; see Example 4.4.1.11). Since the bottom horizontal map is an equivalence of $\infty$-categories (Corollary 5.3.5.11), it follows that the upper horizontal map is also an equivalence of $\infty$-categories (Corollary 4.5.2.23). $\square$