Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.1.6.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits small filtered colimits.

$(2)$

For every small filtered category $\operatorname{\mathcal{K}}$, the $\infty $-category $\operatorname{\mathcal{C}}$ admits $\operatorname{N}_{\bullet }(\operatorname{\mathcal{K}})$-indexed colimits.

$(3)$

For every small directed partially ordered set $(A, \leq )$, the $\infty $-category $\operatorname{\mathcal{C}}$ admits $\operatorname{N}_{\bullet }(A)$-indexed colimits.

Proof. The implication $(1) \Rightarrow (2)$ follows from Corollary 9.1.2.8 and the implication $(2) \Rightarrow (3)$ follows from Example 9.1.1.2. The implication $(3) \Rightarrow (1)$ follows by combining Theorem 9.1.6.2 (and Remark 9.1.6.5) with Corollary 7.2.2.3. $\square$