Corollary 9.1.6.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:
- $(1)$
The $\infty $-category $\operatorname{\mathcal{C}}$ admits small filtered colimits.
- $(2)$
For every small filtered category $\operatorname{\mathcal{K}}$, the $\infty $-category $\operatorname{\mathcal{C}}$ admits $\operatorname{N}_{\bullet }(\operatorname{\mathcal{K}})$-indexed colimits.
- $(3)$
For every small directed partially ordered set $(A, \leq )$, the $\infty $-category $\operatorname{\mathcal{C}}$ admits $\operatorname{N}_{\bullet }(A)$-indexed colimits.