Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 7.6.4.6 (Homotopy Coherent Squares). Let $\operatorname{\mathcal{C}}$ be a simplicial category and let $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ denote the homotopy coherent nerve of $\operatorname{\mathcal{C}}$. Combining Examples 1.5.2.9, 2.4.3.9, and 2.4.3.10, we see that morphisms from $\Delta ^1 \times \Delta ^1$ to $\operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{C}})$ can be identified with the following data:

$(a)$

A collection of objects $X_{01}$, $X_{0}$, $X_{1}$, and $X$ of the category $\operatorname{\mathcal{C}}$.

$(b)$

A collection of morphisms $f_0: X_0 \rightarrow X$, $f_1: X_1 \rightarrow X$, $g_{0}: X_{01} \rightarrow X_0$, $g_{1}: X_{01} \rightarrow X_1$.

$(c)$

A morphism $h: X_{01} \rightarrow X$ in $\operatorname{\mathcal{C}}$ together with a pair of edges $\alpha _{0}: f_0 \circ g_0 \rightarrow h$ and $\alpha _1: f_1 \circ g_1 \rightarrow h$ in the simplicial set $\operatorname{Hom}_{\operatorname{\mathcal{C}}}(X_{01}, X)_{\bullet }$.

We can summarize this data in a diagram

\[ \xymatrix@C =100pt@R=100pt{ X_{01} \ar [r]^-{g_0} \ar [d]_-{g_1} \ar [dr]^-{h} & X_0 \ar [d]^-{f_0} \ar@ {=>}[]+<-20pt,-20pt>;+<-45pt,-45pt>_-{\alpha _0} \\ X_1 \ar [r]_-{ f_1 } \ar@ {=>}[]+<20pt,20pt>;+<45pt,45pt>^-{\alpha _1} & X. } \]

Here we can regard $(a)$ and $(b)$ as supplying a (potentially) non-commutative square diagram in the category $\operatorname{\mathcal{C}}$, and $(c)$ as supplying a witness to the fact that it commutes up to homotopy.