Example 7.6.3.7 (Square Diagrams in $\operatorname{\mathcal{QC}}$). Let $F_0: \operatorname{\mathcal{C}}_0 \rightarrow \operatorname{\mathcal{C}}$ and $F_1: \operatorname{\mathcal{C}}_1 \rightarrow \operatorname{\mathcal{C}}$ be functors of $\infty $-categories. Using Remark 7.6.3.6, we see that the data of a commutative diagram
in the $\infty $-category $\operatorname{\mathcal{QC}}$ is equivalent to the data of an $\infty $-category $\operatorname{\mathcal{C}}_{01}$ equipped with functors
together with natural isomorphisms $\alpha _0: (F_0 \circ G_0) \xrightarrow {\sim } H$ and $\alpha _1: (F_1 \circ G_1) \xrightarrow {\sim } H$. In this case, we can identify the data of the tuple $(G_0, \alpha _0, G_1, \alpha _1, H)$ with a single functor of $\infty $-categories