Example 7.2.3.14. Let $\pi : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a cocartesian fibration of $\infty $-categories, let $X$ be an object of $\operatorname{\mathcal{D}}$, and set $\operatorname{\mathcal{C}}_{X} = \{ X\} \times _{\operatorname{\mathcal{D}}} \operatorname{\mathcal{C}}$. If $X$ is a final object of $\operatorname{\mathcal{D}}$, then the inclusion map $\operatorname{\mathcal{C}}_{X} \hookrightarrow \operatorname{\mathcal{C}}$ is right anodyne, and therefore right cofinal. This follows by combining Corollaries 7.2.3.13 and 4.6.7.24.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$