Corollary 8.1.1.14. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then the projection maps $\lambda _{-}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ and $\lambda _{+}: \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}$ are cocartesian fibrations of $\infty $-categories. Moreover, a morphism $f$ of $\operatorname{Tw}(\operatorname{\mathcal{C}})$ is $\lambda _{-}$-cocartesian if and only if $\lambda _{+}(f)$ is an isomorphism, and $\lambda _{+}$-cocartesian if and only if $\lambda _{-}(f)$ is an isomorphism.
Proof. Let $\pi _{-}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ and $\pi _{+}: \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}$ denote the projection maps. Then $\pi _{-}$ and $\pi _{+}$ are cocartesian fibrations of simplicial sets. Moreover, a morphism $(e_{-}, e_{+})$ of $\operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$ is $\pi _{-}$-cocartesian if and only if $e_{+}$ is an isomorphism in $\operatorname{\mathcal{C}}$, and $\pi _{+}$-cocartesian if and only if $e_{-}$ is an isomorphism in $\operatorname{\mathcal{C}}^{\operatorname{op}}$ (this follows immediately from Remark 5.1.4.6 and Example 5.1.1.4). Corollary 8.1.1.14 now follows by applying Proposition 8.1.1.11 to left and right sides of the diagram
since the vertical map in the center is a left fibration (Proposition 8.1.1.11). $\square$