Proposition 8.1.2.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every object $X \in \operatorname{\mathcal{C}}$, the coslice inclusion
is an equivalence of $\infty $-categories.
Proposition 8.1.2.9. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For every object $X \in \operatorname{\mathcal{C}}$, the coslice inclusion
is an equivalence of $\infty $-categories.
Proof. By construction, we have a commutative diagram
where the vertical maps are left fibrations of $\infty $-categories (Propositions 4.3.6.1 and 8.1.1.11). Moreover, the $\infty $-category $\operatorname{\mathcal{C}}_{X/}$ has an initial object $\widetilde{X}$, given by the identity morphism $\operatorname{id}_{X}: X \rightarrow X$ (Proposition 4.6.7.22). Proposition 8.1.2.1 guarantees that $\iota _{X}( \widetilde{X} )$ is an initial object of the $\infty $-category $\{ X\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$, so that $\iota _{X}$ is an equivalence of $\infty $-categories by virtue of Corollary 5.6.6.20. $\square$