Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.1.2.21. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:

$(1)$

The morphism $f$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{C}}$.

$(2)$

The morphism $f$ is initial when regarded as an object of the $\infty $-category $\{ X\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$.

$(3)$

The morphism $f$ is initial when regarded as an object of the $\infty $-category $\operatorname{Tw}(\operatorname{\mathcal{C}}) \times _{\operatorname{\mathcal{C}}} \{ Y\} $.

Proof. Apply Corollary 8.1.2.20 in the special case $\operatorname{\mathcal{D}}= \Delta ^0$ (together with Examples 7.1.5.2 and 5.1.1.4). $\square$