Corollary 5.4.6.13. The construction
\[ \{ \textnormal{Minimal $\infty $-Categories} \} / \textnormal{Isomorphism} \rightarrow \{ \textnormal{$\infty $-Categories} \} / \textnormal{Equivalence} \]
is a bijection.
Corollary 5.4.6.13. The construction
is a bijection.
Proof. Injectivity is a restatement of Corollary 5.4.6.11, and surjectivity follows from Proposition 5.4.6.12. $\square$