# Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$

### 5.4.6 Minimal $\infty$-Categories

Let $\kappa$ be an uncountable cardinal. An $\infty$-category $\operatorname{\mathcal{D}}$ is essentially $\kappa$-small if and only if there exists an equivalence $\operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, where $\operatorname{\mathcal{C}}$ is a $\kappa$-small $\infty$-category. Our goal in this section is to show that, if this condition is satisfied, then there is a preferred choice for the $\infty$-category $\operatorname{\mathcal{C}}$ which is characterized (up to noncanonical isomorphism) by the requirement that it is minimal.

Definition 5.4.6.1. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. We say that $\operatorname{\mathcal{C}}$ is minimal if it satisfies the following condition, for each $n \geq 0$:

$(\ast _ n)$

Let $\sigma$ and $\sigma '$ be $n$-simplices of $\operatorname{\mathcal{C}}$. Suppose that there exists an isomorphism $h: \sigma \rightarrow \sigma '$ in the $\infty$-category $\operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{C}})$, and that the image of $h$ in the $\infty$-category $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{C}})$ is an identity morphism. Then $\sigma = \sigma '$.

Remark 5.4.6.2. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. Then $\operatorname{\mathcal{C}}$ satisfies condition $(\ast _0)$ of Definition 5.4.6.1 if and only if, for every pair of isomorphic objects $X,Y \in \operatorname{\mathcal{C}}$, we have $X = Y$.

Remark 5.4.6.3. Let $\operatorname{\mathcal{C}}$ be an $\infty$-category. Then $\operatorname{\mathcal{C}}$ satisfies condition $(\ast _1)$ of Definition 5.4.6.1 if and only if, for every pair of objects $X,Y \in \operatorname{\mathcal{C}}$ and every pair of morphisms $f,g: X \rightarrow Y$ which are homotopic, we have $f = g$ (see Corollary 1.3.3.7).

Exercise 5.4.6.4. Let $\operatorname{\mathcal{C}}$ be a category. Show that the nerve $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ automatically satisfies condition $(\ast _ n)$ of Definition 5.4.6.1 for $n > 0$. Consequently, the $\infty$-category $\operatorname{N}_{\bullet }(\operatorname{\mathcal{C}})$ is minimal if and only if, for every pair of isomorphic objects $X,Y \in \operatorname{\mathcal{C}}$, we have $X = Y$.

Remark 5.4.6.5. Let $\operatorname{\mathcal{C}}$ be a minimal $\infty$-category, and let $\operatorname{\mathcal{C}}_0 \subseteq \operatorname{\mathcal{C}}$ be a simplicial subset. If $\operatorname{\mathcal{C}}_0$ is an $\infty$-category, then it is also minimal.

Remark 5.4.6.6. Let $\{ \operatorname{\mathcal{C}}_ i \} _{i \in I}$ be a collection of minimal $\infty$-categories. Then the product $\prod _{i \in I} \operatorname{\mathcal{C}}_ i$ and the coproduct $\coprod _{i \in I} \operatorname{\mathcal{C}}_ i$ are also minimal $\infty$-categories.

Warning 5.4.6.7. The collection of minimal $\infty$-categories has poor closure properties:

• If $\operatorname{\mathcal{C}}$ is a minimal $\infty$-category and $K$ is a simplicial set, then the $\infty$-category $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$ need not be minimal (even in the case $K = \Delta ^1$).

• If $\operatorname{\mathcal{C}}$ is a minimal $\infty$-category and $q: K \rightarrow \operatorname{\mathcal{C}}$ is a diagram, then the $\infty$-categories $\operatorname{\mathcal{C}}_{/q}$ and $\operatorname{\mathcal{C}}_{q/}$ need not be minimal (even in the case $K = \Delta ^0$).

• If $\operatorname{\mathcal{C}}$ is a minimal $\infty$-category and $\operatorname{\mathcal{D}}$ is equivalent to $\operatorname{\mathcal{C}}$, then $\operatorname{\mathcal{D}}$ need not be minimal.

Our main goal in this section is to show that every $\infty$-category $\operatorname{\mathcal{D}}$ admits a minimal model: that is, a minimal $\infty$-category $\operatorname{\mathcal{C}}$ equipped with an equivalence $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$. Moreover, the $\infty$-category $\operatorname{\mathcal{C}}$ is uniquely determined up to isomorphism (Corollary 5.4.6.13). Our first step is to show that, in this case, the functor $F$ is automatically a monomorphism.

Lemma 5.4.6.8. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an equivalence of $\infty$-categories. If $\operatorname{\mathcal{C}}$ is minimal, then $F$ is a monomorphism of simplicial sets.

Proof. Let $\sigma , \sigma ': \Delta ^ n \rightarrow \operatorname{\mathcal{C}}$ be $n$-simplices of $\operatorname{\mathcal{C}}$ satisfying $F(\sigma ) = F(\sigma ')$; we wish to show that $\sigma = \sigma '$. Our proof proceeds by induction on $n$. Set $\tau = F(\sigma ) = F(\sigma ')$ and $\sigma _0 = \sigma |_{ \operatorname{\partial \Delta }^ n }$, so that our inductive hypothesis guarantees that $\sigma _0 = \sigma '|_{ \operatorname{\partial \Delta }^ n}$.

Fix a functor $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ which is homotopy inverse to $F$, so that there exists a $2$-simplex

$\xymatrix@R =50pt@C=50pt{ \operatorname{id}_{ \operatorname{\mathcal{C}}} \ar [rr]^-{ \operatorname{id}} \ar [dr]_{\alpha } & & \operatorname{id}_{ \operatorname{\mathcal{C}}} \\ & G \circ F \ar [ur]_{\beta } & }$

in the $\infty$-category $\operatorname{Fun}( \operatorname{\mathcal{C}}, \operatorname{\mathcal{C}})$, where $\alpha$ and $\beta$ are (mutually inverse) isomorphisms. Precomposing with the morphism $\sigma _0: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{C}}$, we obtain a $2$-simplex

5.35
\begin{equation} \begin{gathered}\label{equation:minimal-is-mono} \xymatrix@R =50pt@C=50pt{ \sigma _0 \ar [rr]^-{ \operatorname{id}} \ar [dr]_{\alpha (\sigma _0)} & & \sigma _0 \\ & (G \circ F)(\sigma _0) \ar [ur]_{\beta (\sigma _0)} & } \end{gathered} \end{equation}

in the $\infty$-category $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{C}})$. Since $\operatorname{\mathcal{C}}$ is an $\infty$-category, Theorem 1.4.6.1 guarantees that we can lift (5.35) to a $2$-simplex

$\xymatrix@R =50pt@C=50pt{ \sigma \ar [rr]^-{ \gamma } \ar [dr]_{\alpha (\sigma )} & & \sigma ' \\ & G(\tau ). \ar [ur]_{\beta (\sigma ')} & }$

in the $\infty$-category $\operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{C}})$. By construction, $\gamma$ is an isomorphism whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{C}})$ is an identity morphism. Invoking our assumption that $\operatorname{\mathcal{C}}$ is minimal, we deduce that $\sigma = \sigma '$. $\square$

Corollary 5.4.6.9. Let $\operatorname{\mathcal{C}}$ be a minimal $\infty$-category and let $\kappa$ be an uncountable cardinal. Then $\operatorname{\mathcal{C}}$ is essentially $\kappa$-small if and only if it is $\kappa$-small.

Proof. Suppose that $\operatorname{\mathcal{C}}$ is essentially $\kappa$-small. Then there exists an equivalence of $\infty$-categories $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, where $\operatorname{\mathcal{D}}$ is $\kappa$-small. Since $\operatorname{\mathcal{C}}$ is minimal, the functor $F$ is a monomorphism of simplicial sets (Lemma 5.4.6.8), so that $\operatorname{\mathcal{C}}$ is also $\kappa$-small (Remark 5.4.4.8). $\square$

Proposition 5.4.6.10 (Uniqueness). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an equivalence of $\infty$-categories. If $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are minimal, then $F$ is an isomorphism of simplicial sets.

Proof. Let $G: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ be a homotopy inverse to $F$. It follows from Lemma 5.4.6.8 that $F$ and $G$ are monomorphisms of simplicial sets. We will complete the proof by showing that the composite map $(F \circ G): \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{D}}$ is an epimorphism of simplicial sets (so that, in particular, $F$ is an epimorphism). Let $\sigma$ be an $n$-simplex of $\operatorname{\mathcal{D}}$; we wish to show that $\sigma$ belongs to the image of $F \circ G$. The proof proceeds by induction on $n$. Set $\sigma _0 = \sigma |_{ \operatorname{\partial \Delta }^ n }$; our inductive hypothesis then guarantees that we can write $\sigma _0 = (F \circ G)( \tau _0 )$ for some morphism $\tau _0: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{D}}$.

Choose a $2$-simplex

$\xymatrix@R =50pt@C=50pt{ F \circ G \ar [dr]_{\alpha } \ar [rr]^-{ \operatorname{id}_{ F \circ G} } & & F \circ G \\ & \operatorname{id}_{\operatorname{\mathcal{D}}} \ar [ur]_{\beta } & }$

in the $\infty$-category $\operatorname{Fun}(\operatorname{\mathcal{D}}, \operatorname{\mathcal{D}})$, where $\alpha$ and $\beta$ are isomorphisms. Precomposing with $\tau _0: \operatorname{\partial \Delta }^ n \rightarrow \operatorname{\mathcal{D}}$, we obtain a $2$-simplex

5.36
\begin{equation} \begin{gathered}\label{equation:uniqueness-of-minimal} \xymatrix@R =50pt@C=50pt{ \sigma _0 \ar [dr]_{\alpha (\tau _0)} \ar [rr]^-{ \operatorname{id}} & & \sigma _0 \\ & \tau _0 \ar [ur]_{\beta (\tau _0)} & } \end{gathered} \end{equation}

in the $\infty$-category $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{D}})$. Using Corollary 4.4.5.9, we can lift $\alpha (\tau _0)$ to an isomorphism $\widetilde{\alpha }: \sigma \rightarrow \tau$ in the $\infty$-category $\operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{D}})$. Since $\operatorname{\mathcal{D}}$ is an $\infty$-category, Theorem 1.4.6.1 guarantees that we can lift (5.36) to a $2$-simplex

$\xymatrix@R =50pt@C=50pt{ \sigma \ar [rr]^-{ \gamma } \ar [dr]_{\widetilde{\alpha }} & & (F \circ G)(\tau ) \\ & \tau . \ar [ur]_{\beta (\tau )} & }$

in the $\infty$-category $\operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{D}})$. By construction, $\gamma$ is an isomorphism whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{D}})$ is an identity morphism. Our assumption that $\operatorname{\mathcal{D}}$ is minimal then guarantees that $\sigma = (F \circ G)(\tau )$ belongs to the image of $F \circ G$. $\square$

Corollary 5.4.6.11. Let $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ be minimal $\infty$-categories. Then $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are equivalent if and only if they are isomorphic.

We now prove the existence of minimal models.

Proposition 5.4.6.12 (Existence). Let $\operatorname{\mathcal{D}}$ be an $\infty$-category. Then there exists an equivalence of $\infty$-categories $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, where $\operatorname{\mathcal{C}}$ is minimal.

Corollary 5.4.6.13. The construction

$\{ \textnormal{Minimal \infty -Categories} \} / \textnormal{Isomorphism} \rightarrow \{ \textnormal{\infty -Categories} \} / \textnormal{Equivalence}$

is a bijection.

Proof. Injectivity is a restatement of Corollary 5.4.6.11, and surjectivity follows from Proposition 5.4.6.12. $\square$

Corollary 5.4.6.14. Let $\operatorname{\mathcal{C}}$ be a simplicial set. Then there is a least uncountable cardinal $\kappa$ for which $\operatorname{\mathcal{C}}$ is essentially $\kappa$-small. Moreover, $\kappa$ is always a successor cardinal.

Proof. By virtue of Proposition 5.4.6.12, we may assume that $\operatorname{\mathcal{C}}$ is a minimal $\infty$-category. In this case, the desired result follows by combining Corollary 5.4.6.9 with Remark 5.4.4.7. $\square$

Proof of Proposition 5.4.6.12. Let $\sigma , \sigma ': \Delta ^ n \rightarrow \operatorname{\mathcal{D}}$ be $n$-simplices of $\operatorname{\mathcal{D}}$. We write $\sigma \sim \sigma '$ if there exists an isomorphism $\sigma \rightarrow \sigma '$ in the $\infty$-category $\operatorname{Fun}( \Delta ^ n, \operatorname{\mathcal{D}})$ whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^ n, \operatorname{\mathcal{D}})$ is an identity morphism. Note that, if this condition is satisfied, then we must have $\sigma |_{ \operatorname{\partial \Delta }^ n } = \sigma ' |_{ \operatorname{\partial \Delta }^ n }$. In particular, if $\sigma$ and $\sigma '$ are both degenerate, we must have $\sigma = \sigma '$. Let $R(n)$ denote a collection of $n$-simplices of $\operatorname{\mathcal{D}}$ which contains all degenerate $n$-simplices, and contains exactly one element of every $\sim$-class. We let $\operatorname{\mathcal{C}}\subseteq \operatorname{\mathcal{D}}$ denote the simplicial subset consisting of all simplices $\tau : \Delta ^{m} \rightarrow \operatorname{\mathcal{D}}$ having the property that, for every morphism of linearly ordered sets $\alpha : [n] \rightarrow [m]$, the $n$-simplex $\Delta ^{n} \rightarrow \Delta ^{m} \xrightarrow { \tau } \operatorname{\mathcal{D}}$ belongs to $R(n)$ (by construction, it suffices to check this in the case where $\alpha$ is injective). To complete the proof, it will suffice to establish the following:

$(1)$

The simplicial set $\operatorname{\mathcal{C}}$ is an $\infty$-category.

$(2)$

The $\infty$-category $\operatorname{\mathcal{C}}$ is minimal.

$(3)$

The inclusion map $\operatorname{\mathcal{C}}\hookrightarrow \operatorname{\mathcal{D}}$ is an equivalence of $\infty$-categories.

We begin by proving $(1)$. Suppose we are given integers $0 < i < n$ and a morphism of simplicial sets $\sigma _0: \Lambda ^{n}_{i} \rightarrow \operatorname{\mathcal{C}}$; we wish to show that $\sigma _0$ can be extended to an $n$-simplex $\sigma$ of $\operatorname{\mathcal{C}}$. Since $\operatorname{\mathcal{D}}$ is an $\infty$-category, we can extend $\sigma _0$ to an $n$-simplex $\sigma '': \Delta ^ n \rightarrow \operatorname{\mathcal{D}}$. Let $\overline{\sigma }'' = d_ i( \sigma '' )$ denote the $i$th face of $\sigma ''$. Then there is a unique element $\overline{\sigma }' \in R(n-1)$ satisfying $\overline{\sigma }' \sim \overline{\sigma }''$. Choose an isomorphism $\overline{\alpha }: \overline{\sigma }' \rightarrow \overline{\sigma }''$ in the $\infty$-category $\operatorname{Fun}( \Delta ^{n-1}, \operatorname{\mathcal{D}})$ whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^{n-1}, \operatorname{\mathcal{D}})$ is an identity morphism. Then $\alpha$ can be lifted uniquely to an isomorphism $\widetilde{\alpha }: \sigma '|_{ \operatorname{\partial \Delta }^{n} } \rightarrow \widetilde{\sigma }''$ in the $\infty$-category $\operatorname{Fun}( \operatorname{\partial \Delta }^{n-1}, \operatorname{\mathcal{D}})$ whose image in $\operatorname{Fun}( \Lambda ^{n}_{i}, \operatorname{\mathcal{D}})$ is an identity morphism. Applying Proposition 4.4.5.8, we can lift $\widetilde{\alpha }$ to an isomorphism $\alpha : \sigma ' \rightarrow \sigma ''$ in the $\infty$-category $\operatorname{Fun}( \Delta ^{n}, \operatorname{\mathcal{D}})$. By construction, the restriction $\sigma '|_{ \operatorname{\partial \Delta }^{n} }$ factors through $\operatorname{\mathcal{C}}$. Let $\sigma$ be the unique $n$-simplex of $\operatorname{\mathcal{D}}$ which belongs to $R(n)$ and satisfies $\sigma \sim \sigma '$. Then $\sigma$ is an $n$-simplex of $\operatorname{\mathcal{C}}$ satisfying $\sigma |_{ \Lambda ^{n}_{i} } = \sigma '|_{ \Lambda ^{n}_{i} } = \sigma ''|_{ \Lambda ^ n_{i} } = \sigma _0$. This completes the proof of $(1)$.

We now prove $(2)$. Let $\sigma$ and $\sigma '$ be $n$-simplices of $\operatorname{\mathcal{C}}$, and suppose that there exists an isomorphism $\sigma \rightarrow \sigma '$ in $\operatorname{Fun}( \Delta ^{n}, \operatorname{\mathcal{C}})$ whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{C}})$ is an identity morphism. It follows that, when regarded as $n$-simplices of $\operatorname{\mathcal{D}}$, we have $\sigma \sim \sigma '$. Since $\sigma$ and $\sigma '$ both belong to $R(n)$, we conclude that $\sigma = \sigma '$.

To prove $(3)$, we will show that $\operatorname{\mathcal{C}}$ is a deformation retract of $\operatorname{\mathcal{C}}$; that is, there exists a functor $H: \Delta ^{1} \times \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{D}}$ satisfying the following conditions:

$(i)$

The restriction $H|_{ \{ 0\} \times \operatorname{\mathcal{D}}}$ is the identity functor $\operatorname{id}_{ \operatorname{\mathcal{D}}}$.

$(ii)$

The restriction $H|_{ \{ 1\} \times \operatorname{\mathcal{D}}}$ factors through $\operatorname{\mathcal{C}}$.

$(iii)$

The restriction $H|_{ \Delta ^{1} \times \operatorname{\mathcal{C}}}$ coincides with the projection map

$\Delta ^1 \times \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}\subseteq \operatorname{\mathcal{D}}.$
$(iv)$

For each object $D \in \operatorname{\mathcal{D}}$, the restriction $H|_{ \Delta ^1 \times \{ D\} }$ is an isomorphism in $\operatorname{\mathcal{D}}$.

Note that these conditions guarantee that the functor $H|_{ \{ 1\} \times \operatorname{\mathcal{D}}}: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{C}}$ is a homotopy inverse to the inclusion map $\operatorname{\mathcal{C}}\hookrightarrow \operatorname{\mathcal{D}}$.

Let $Q$ denote the set of pairs $(S, H_{S} )$, where $S \subseteq \operatorname{\mathcal{D}}$ is a simplicial subset which contains $\operatorname{\mathcal{C}}$ and $H_{S}: \Delta ^{1} \times S \rightarrow \operatorname{\mathcal{D}}$ is a morphism of simplicial sets which satisfies the analogues of conditions $(i)$ through $(iv)$. We regard $Q$ as a partially ordered set, where $(S, H_ S) \leq (S', H_{S'} )$ if $S \subseteq S'$ and $H_{S} = H_{S'} |_{ \Delta ^1 \times S}$. This partially ordered set satisfies the hypotheses of Zorn's lemma, and therefore contains a maximal element $(S_{\mathrm{max}}, H_{\mathrm{max}} )$. To complete the proof, it will suffice to show that $S_{\mathrm{max}} = \operatorname{\mathcal{D}}$. Assume otherwise. Then there is some $n$-simplex $\tau : \Delta ^{n} \rightarrow \operatorname{\mathcal{D}}$ which is not contained in $S_{\mathrm{max}}$. Choose $n$ as small as possible, so that $\tau _0 = \tau |_{ \operatorname{\partial \Delta }^{n} }$ factors through $S_{\mathrm{max}}$. Then the composite map

$\Delta ^1 \times \operatorname{\partial \Delta }^{n} \xrightarrow { \operatorname{id}\times \tau _0 } \Delta ^1 \times S_{\mathrm{max}} \xrightarrow { H_{\mathrm{max}} } \operatorname{\mathcal{D}}$

can be viewed as an isomorphism $\alpha _0: \tau _0 \rightarrow \tau '_0$ in the $\infty$-category $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{D}})$, where $\tau '_0$ belongs to $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{C}})$. Using Proposition 4.4.5.8, we can lift $\alpha _0$ to an isomorphism $\tau \rightarrow \tau '$ in the $\infty$-category $\operatorname{Fun}( \Delta ^{n}, \operatorname{\mathcal{D}})$. Let $\tau ''$ be the unique $n$-simplex of $\operatorname{\mathcal{D}}$ which belongs to $R(n)$ and satisfies $\tau ' \sim \tau ''$. Then there exists an isomorphism $\beta : \tau ' \rightarrow \tau ''$ in the $\infty$-category $\operatorname{Fun}( \Delta ^{n}, \operatorname{\mathcal{D}})$ whose image in $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{D}})$ is an identity morphism. Using Theorem 1.4.6.1, we can lift the degenerate $2$-simplex

$\xymatrix@R =50pt@C=50pt{ & \tau '_0 \ar [dr]^{\operatorname{id}} & \\ \tau _0 \ar [ur]^{\alpha _0} \ar [rr]^{\alpha _0} & & \tau '_0 }$

of $\operatorname{Fun}( \operatorname{\partial \Delta }^{n}, \operatorname{\mathcal{D}})$ to a $2$-simplex

$\xymatrix@R =50pt@C=50pt{ & \tau ' \ar [dr]^{\beta } & \\ \tau \ar [ur]^{\alpha } \ar [rr]^{ \gamma } & & \tau '' }$

in the $\infty$-category $\operatorname{Fun}( \Delta ^{n}, \operatorname{\mathcal{D}})$. Let $S$ denote the simplicial subset of $\operatorname{\mathcal{D}}$ given by the union of $S_{\mathrm{max}}$ with the image of $\tau$. Then $H_{\mathrm{max}}$ extends uniquely to a morphism $H_{S}: \Delta ^1 \times S \rightarrow \operatorname{\mathcal{D}}$ for which the composite map

$\Delta ^1 \times \Delta ^{n} \xrightarrow { \operatorname{id}\times \tau } \Delta ^1 \times S \xrightarrow {H_{S}} \operatorname{\mathcal{D}}$

coincides with $\gamma$. By construction, the pair $(S, H_{S} )$ is an element of $Q$ satisfying $(S, H_ S) > ( S_{\mathrm{max}}, H_{ \mathrm{max}} )$, contradicting the maximality of $( S_{\mathrm{max}}, H_{ \mathrm{max}} )$. $\square$