Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Lemma 8.4.6.8. Let $\mathbb {K}$ be a collection of simplicial sets, let $h: \operatorname{\mathcal{C}}\rightarrow \widehat{\operatorname{\mathcal{C}}}$ be a functor of $\infty $-categories which exhibits $\widehat{\operatorname{\mathcal{C}}}$ as a $\mathbb {K}$-cocompletion of $\operatorname{\mathcal{C}}$, and let $F: \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{\mathcal{D}}$ a functor which satisfies the following conditions:

$(0)$

The $\infty $-category $\operatorname{\mathcal{D}}$ is $\mathbb {K}$-cocomplete and the functor $F$ preserves $K$-indexed colimits, for each $K \in \mathbb {K}$.

$(1)$

The functor $f = F \circ h$ is fully faithful.

$(2)$

Let $\kappa $ be an uncountable regular cardinal such that $\operatorname{\mathcal{D}}$ is locally $\kappa $-small and each $K \in \mathbf{K}$ is essentially $\kappa $-small. Then, for each $C \in \operatorname{\mathcal{C}}$, the corepresentable functor

\[ \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa } \quad \quad D \mapsto \operatorname{Hom}_{\operatorname{\mathcal{D}}}( f(C), D ) \]

preserves $K$-indexed colimits, for each $K \in \mathbb {K}$.

Then $F$ is fully faithful.

Proof. By virtue of Proposition 8.4.5.7, we may assume without loss of generality that $\widehat{\operatorname{\mathcal{C}}}$ is the smallest replete full subcategory of $\operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$ which contains all representable functors and is closed under the formation of $K$-indexed colimits for $K \in \mathbb {K}$ (see Construction 8.4.5.5). For every pair of objects $\mathscr {G}, \mathscr {G}' \in \widehat{\operatorname{\mathcal{C}}}$, the functor $F$ induces a morphism of Kan complexes

\[ \theta _{\mathscr {G}, \mathscr {G}'}: \operatorname{Hom}_{ \widehat{\operatorname{\mathcal{C}}} }( \mathscr {G}, \mathscr {G}' ) \rightarrow \operatorname{Hom}_{ \operatorname{\mathcal{D}}}( F( \mathscr {G}), F( \mathscr {G}' ) ). \]

By virtue of Corollary 8.3.5.8 (and Remark 8.3.5.9), we can promote the construction $(\mathscr {G}, \mathscr {G}') \mapsto \theta _{ \mathscr {G}, \mathscr {G}' }$ to a functor of $\infty $-categories

\[ \theta : \widehat{\operatorname{\mathcal{C}}}^{\operatorname{op}} \times \widehat{\operatorname{\mathcal{C}}} \rightarrow \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{S}}^{< \kappa } ). \]

We wish to show that, for every pair of objects $\mathscr {G}, \mathscr {G}' \in \widehat{\operatorname{\mathcal{C}}}$, the morphism $\theta _{\mathscr {G}, \mathscr {G}'}$ is a homotopy equivalence. Let us first regard the functor $\mathscr {G}'$ as fixed. Let $\widehat{\operatorname{\mathcal{C}}}'$ denote the full subcategory of $\widehat{\operatorname{\mathcal{C}}}$ spanned by those objects $\mathscr {G}$ for which $\theta _{ \mathscr {G}, \mathscr {G}' }$ is a homotopy equivalence. For each $K \in \mathbb {K}$, our assumption that $F$ preserves $K$-indexed colimits guarantees that the functor $\mathscr {G} \mapsto \theta _{ \mathscr {G}, \mathscr {G}' }$ preserves $K^{\operatorname{op}}$-indexed limits (Proposition 7.4.1.18). Consequently, the full subcategory $\widehat{\operatorname{\mathcal{C}}}' \subseteq \widehat{\operatorname{\mathcal{C}}}$ is closed under the formation of $K$-indexed colimits. It will therefore suffice to show that $\theta _{ \mathscr {G}, \mathscr {G}' }$ is a homotopy equivalence in the special case where $\mathscr {G} = h_{C}$ is the functor represented by some object $C \in \operatorname{\mathcal{C}}$.

Let us now regard $\mathscr {G} = h_ C$ as fixed. Combining Example 8.4.6.2 with assumption $(2)$, we deduce that the functor

\[ \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa }) \rightarrow \operatorname{Fun}( \Delta ^1, \operatorname{\mathcal{S}}^{< \lambda } ) \quad \quad \mathscr {G}' \mapsto \theta _{ \mathscr {G}, \mathscr {G}'} \]

preserves $K$-indexed colimits, for each $K \in \mathbb {K}$. Invoking Corollary 8.4.3.9 again, we are reduced to proving that $\theta _{ \mathscr {G}, \mathscr {G}' }$ is a homotopy equivalence in the special case where $\mathscr {G}' = h_{C'}$ for some object $C' \in \operatorname{\mathcal{C}}$. In this case, we have a commutative diagram of Kan complexes

\[ \xymatrix@R =50pt@C=50pt{ & \operatorname{Hom}_{\operatorname{\mathcal{C}}}(C,C') \ar [dl] \ar [dr] & \\ \operatorname{Hom}_{ \widehat{\operatorname{\mathcal{C}}} }( \mathscr {G}, \mathscr {G}' ) \ar [rr]^{ \theta _{\mathscr {G}, \mathscr {G}'} } & & \operatorname{Hom}_{\operatorname{\mathcal{D}}}( F(\mathscr {G}), F( \mathscr {G}') ), } \]

where the left vertical map is a homotopy equivalence by virtue of Yoneda's lemma (Theorem 8.3.3.13) and the right vertical map is a homotopy equivalence by virtue of assumption $(1)$. It follows that lower horizontal map is also a homotopy equivalence. $\square$