Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 6.2.5.4. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. A class of short morphisms for $\operatorname{\mathcal{C}}$ is a collection $S$ of morphisms of $\operatorname{\mathcal{C}}$ with the following properties:

$(1)$

Every identity morphism of $\operatorname{\mathcal{C}}$ belongs to $S$.

$(2)$

For every $2$-simplex

\[ \xymatrix@R =50pt@C=50pt{ & Y \ar [dr]^{f'} & \\ X \ar [ur]^{f''} \ar [rr]^{f} & & Z } \]

of the $\infty $-category $\operatorname{\mathcal{C}}$, if $f$ and $f'$ belong to $S$, then $f''$ also belongs to $S$.

$(3)$

Every morphism $f: X \rightarrow Z$ of $\operatorname{\mathcal{C}}$ admits an $S$-optimal factorization (Definition 6.2.5.1).

$(4)$

Every morphism of $\operatorname{\mathcal{C}}$ can be obtained as a composition of morphisms which belong to $S$.