Remark 7.3.3.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $\operatorname{\mathcal{C}}^{0} \subseteq \operatorname{\mathcal{C}}$ be a full subcategory, and let $U: \operatorname{\mathcal{D}}\rightarrow \operatorname{\mathcal{E}}$ be a functor of $\infty $-categories. Consider the evaluation functor
For every object $C \in \operatorname{\mathcal{C}}$ and every functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$, the following conditions are equivalent:
- $(a)$
The functor $F$ is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0}$ at $C$.
- $(b)$
The evaluation functor $\operatorname{ev}$ is $U$-left Kan extended from $\operatorname{\mathcal{C}}^{0} \times \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$ at $(C,F)$.
To prove this, it will suffice to show that the inclusion map
is right cofinal (Corollary 7.2.2.2). This follows from Corollary 7.2.1.19, since the inclusion map $\{ \operatorname{id}_{F} \} \hookrightarrow \operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})_{/F}$ is right cofinal (the identity morphism $\operatorname{id}_{F}$ is an isomorphism in $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})$, and therefore final when regarded as an object of the $\infty $-category $\operatorname{Fun}(\operatorname{\mathcal{C}}, \operatorname{\mathcal{D}})_{/F}$ by virtue of Proposition 4.6.7.22).