Remark 8.5.1.26. Let $\sigma : \Delta ^2 \twoheadrightarrow \mathcal{R}$ be the epimorphism of Notation 8.5.1.24. For every $\infty $-category $\operatorname{\mathcal{C}}$, precomposition with $\sigma $ induces a fully faithful functor $\operatorname{Fun}( \mathcal{R}, \operatorname{\mathcal{C}}) \hookrightarrow \operatorname{Fun}( \Delta ^2, \operatorname{\mathcal{C}})$, whose essential image is the full subcategory $\operatorname{Fun}'( \Delta ^2, \operatorname{\mathcal{C}}) \subseteq \operatorname{Fun}( \Delta ^2, \operatorname{\mathcal{C}})$ spanned by those diagrams
where $u$ is an isomorphism. This follows by applying Corollary 4.5.2.29 to the pullback square
since the vertical maps are isofibrations (Corollary 4.4.5.3) and the lower horizontal map is an equivalence of $\infty $-categories by virtue of Corollary 4.5.3.13.