Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.4.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $K$ be a simplicial set. If $\operatorname{\mathcal{C}}$ is idempotent complete, then $\operatorname{Fun}(K, \operatorname{\mathcal{C}})$ is idempotent complete.