Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 8.5.4.18. Broadly speaking, Proposition 8.5.4.16 will be useful to us because it shows that the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{Idem})$ admits a (left and right) cofinal diagram $Q: K \rightarrow \operatorname{N}_{\bullet }( \operatorname{Idem})$, where the simplicial set $K$ is finite-dimensional. Beware that it is not possible to arrange that the simplicial set $K$ is finite, since an $\infty $-category which admits finite colimits need not be idempotent complete (Warning 8.5.4.3). In particular, there does not exist a categorical equivalence $K \rightarrow \operatorname{N}_{\bullet }( \operatorname{Idem})$, where $K$ is a finite simplicial set.