Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.5.4.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits sequential limits (or colimits). Then $\operatorname{\mathcal{C}}$ is idempotent complete.

Proof. It follows from Proposition 8.5.4.16 (and Corollary 7.2.2.12) that the $\infty $-category $\operatorname{\mathcal{C}}$ admits limits (or colimits) indexed by the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{Idem})$, and is therefore idempotent complete by virtue of Proposition 8.5.4.7. $\square$