Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 8.5.6.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that an endomorphism $e: X \rightarrow X$ in $\operatorname{\mathcal{C}}$ is split idempotent if the homotopy class $[e]$ is a split idempotent in the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ (see Example 8.5.2.3).