Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 8.2.1.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\lambda : \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$ be the twisted arrow coupling of Example 8.2.0.2. For every morphism $f: X \rightarrow Y$ in the $\infty $-category $\operatorname{\mathcal{C}}$, Corollary 8.1.2.21 asserts that the following conditions are equivalent:

$(1)$

The morphism $f$ is an isomorphism in $\operatorname{\mathcal{C}}$.

$(2)$

As an object of $\operatorname{Tw}(\operatorname{\mathcal{C}})$, $f$ is couniversal with respect to the coupling $\lambda $.

$(3)$

As an object of $\operatorname{Tw}(\operatorname{\mathcal{C}})$, $f$ is universal with respect to the coupling $\lambda $.

In particular, the coupling $\lambda $ is both representable and corepresentable.