Variant 8.2.3.8. Let $\lambda : \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}_{-} \times \operatorname{\mathcal{C}}_{+}$ be a coupling of $\infty $-categories and let $F: \operatorname{\mathcal{C}}_{-} \rightarrow \operatorname{\mathcal{C}}_{+}$ be a functor. We say that $\lambda $ is corepresentable by $F$ if there exists a categorical pullback square
In this case, we will say that the diagram (8.38) exhibits the coupling $\lambda $ as corepresented by $F$. It follows from Theorem 8.2.3.4 that $\lambda $ is corepresentable (in the sense of Definition 8.2.1.3) if and only if it is corepresentable by $F$, for some functor $F: \operatorname{\mathcal{C}}_{-} \rightarrow \operatorname{\mathcal{C}}_{+}$. Moreover, if this condition is satisfied, then the functor $F$ is uniquely determined up to isomorphism.